【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點(diǎn)D在邊AC上,且AD=2CD,DE⊥AB,垂足為點(diǎn)E,聯(lián)結(jié)CE,求:
(1)線段BE的長;
(2)∠ECB的余切值.

【答案】
(1)

解:∵AD=2CD,AC=3,

∴AD=2,

∵在Rt△ABC中,∠ACB=90°,AC=BC=3,

∴∠A=∠B=45°,AB= = =3

∵DE⊥AB,

∴∠AED=90°,∠ADE=∠A=45°,

∴AE=ADcos45°=2× =

∴BE=AB﹣AE=3 =2 ,

即線段BE的長為2


(2)

解:過點(diǎn)E作EH⊥BC,垂足為點(diǎn)H,如圖所示:

∵在Rt△BEH中,∠EHB=90°,∠B=45°,

∴EH=BH=BEcos45°=2 × =2,

∵BC=3,

∴CH=1,

在Rt△CHE中,cot∠ECB= =

即∠ECB的余切值為


【解析】(1)由等腰直角三角形的性質(zhì)得出∠A=∠B=45°,由勾股定理求出AB=3 ,求出∠ADE=∠A=45°,由三角函數(shù)得出AE= ,即可得出BE的長;(2)過點(diǎn)E作EH⊥BC,垂足為點(diǎn)H,由三角函數(shù)求出EH=BH=BEcos45°=2,得出CH=1,在Rt△CHE中,由三角函數(shù)求出cot∠ECB= 即可.本題考查了解直角三角形、勾股定理、等腰直角三角形的性質(zhì)、三角函數(shù);熟練掌握等腰直角三角形的性質(zhì),通過作輔助線求出CH是解決問題(2)的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,有下列說法:
①拋物線與y軸的交點(diǎn)為(0,6);
②拋物線的對稱軸是x=1;
③拋物線與x軸有兩個(gè)交點(diǎn),它們之間的距離是
④在對稱軸左側(cè)y隨x增大而增大.
其中正確的說法是(
A.①②③
B.②③④
C.②③
D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為:A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)將△ABC沿y軸翻折,畫出翻折后的△A1B1C1 , 點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo)是
(2)△ABC關(guān)于x軸對稱的圖形△A2B2C2 , 直接寫出點(diǎn)A2的坐標(biāo)
(3)若△DBC與△ABC全等(點(diǎn)D與點(diǎn)A重合除外),請直接寫出滿足條件點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動,同時(shí)動點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動都停止. 設(shè)點(diǎn)M運(yùn)動的時(shí)間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點(diǎn)E是邊AC的中點(diǎn),問在點(diǎn)M運(yùn)動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點(diǎn)A(1,﹣k+4).

(1)試確定這兩函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)B的坐標(biāo),并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點(diǎn)E是邊AB上的動點(diǎn),點(diǎn)F是射線CD上一點(diǎn),射線ED和射線AF交于點(diǎn)G,且∠AGE=∠DAB.

(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點(diǎn)F在邊CD上(不與點(diǎn)C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn).AEF=90°,且EF交正方形外角∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.

經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證AME≌△ECF,所以AE=EF.

在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖2,如果把點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC(B,C)的任意一點(diǎn),其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

(2)小華提出:如圖3,點(diǎn)EBC的延長線上(C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立。你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角形三角板按圖1所示的位置放置,圖2是由它抽象出的幾何圖形AB=ACAE=AD,BAC=EAD=90°B,C,E在同一條直線上,連接DC

1請找出圖2中與ABE全等的三角形并給予證明;

2證明:DCBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎(jiǎng)活動,凡在開業(yè)當(dāng)天進(jìn)店購物的顧客,都能獲得一次抽獎(jiǎng)的機(jī)會,抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3、4的4個(gè)小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,并計(jì)算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎(jiǎng).
(1)請用列表或樹狀圖(樹狀圖也稱樹形圖)的方法(選其中一種即可),把抽獎(jiǎng)一次可能出現(xiàn)的結(jié)果表示出來;
(2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎(jiǎng)活動,求能中獎(jiǎng)的概率P.

查看答案和解析>>

同步練習(xí)冊答案