【題目】如圖,是等邊三角形,過它的三個(gè)頂點(diǎn)分別作對(duì)邊的平行線,則圖中共有______個(gè)等邊三角形.

【答案】5

【解析】

ABC是等邊三角形,可得三個(gè)內(nèi)角都是60°,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等,可得AFC、BCE、ABD都是等邊三角形,而最大的DEF也是等邊三角形,所以共有5個(gè).

解:∵△ABC是等邊三角形,

∴∠ABC=∠BCA=∠CAB60°,

DFBC

∴∠FAC=∠ACB60°,∠DAB=∠ABC60°,

同理:∠ACF=∠BAC60°

AFC中,∠FAC=∠ACF60°

∴△AFC是等邊三角形,

同理可證:ABD,BCE都是等邊三角形,

因此∠E=∠F=∠D60°,DEF是等邊三角形,

故有5個(gè)等邊三角形,

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=-x2+bx+c的頂點(diǎn)P的坐標(biāo)為(n,n2+2n+1)(n≥1.

1)求bn,cn之間的關(guān)系式;

2)若拋物線y=-x2+bx+cx軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)PAB的距離等于線段AB長(zhǎng)的2倍,求此拋物線y=-x2+bx+c的解析式;

3)設(shè)拋物線y=-x2+bx+cy軸交于點(diǎn)D,O為原點(diǎn),矩形OEFD的頂點(diǎn)E,F分別在x軸和該拋物線上,當(dāng)矩形OEFD的面積為20時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,把一張長(zhǎng)方形的紙片ABCD沿對(duì)角線BD折疊,點(diǎn)C落在E處,BEAD于點(diǎn)F.

1)求證:FB=FD;

2)如圖2,連接AE,求證:AE∥BD;

3)如圖3,延長(zhǎng)BADE相交于點(diǎn)G,連接GF并延長(zhǎng)交BD于點(diǎn)H,求證:GH垂直平分BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形四個(gè)角上,分別剪去大小相等的等腰直角三角形,當(dāng)三角形的直角邊由小變大時(shí),陰影部分的面積也隨之發(fā)生變化,它們的變化情況如下:

三角形的直角邊長(zhǎng)/

1

2

3

4

5

6

7

8

9

10

陰影部分的面積/

398

392

382

368

350

302

272

200

(1)在這個(gè)變化過程中,自變量、因變量各是什么?

(2)請(qǐng)將上述表格補(bǔ)充完整;

(3)當(dāng)?shù)妊苯侨切蔚闹苯沁呴L(zhǎng)由增加到時(shí),陰影部分的面積是怎樣變化的?

(4)設(shè)等腰直角三角形的直角邊長(zhǎng)為,圖中陰影部分的面積為,寫出的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,則DM的長(zhǎng)為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于兩點(diǎn),于點(diǎn),點(diǎn)為直線上不與點(diǎn)重合的一個(gè)動(dòng)點(diǎn).

(1)求線段的長(zhǎng);

(2)當(dāng)的面積是6時(shí),求點(diǎn)的坐標(biāo);

(3)軸上是否存在點(diǎn),使得以、為頂點(diǎn)的三角形與全等,若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)的坐標(biāo),否則,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某政府部門進(jìn)行公務(wù)員招聘考試,其中三人中錄取一人,他們的成績(jī)?nèi)缦拢?/span>

測(cè)試成績(jī)

題目

文化課知識(shí)

74

87

69

面試

58

74

70

平時(shí)表現(xiàn)

87

43

65

1)按照平均成績(jī)甲、乙、丙誰應(yīng)被錄?

2)若按照文化課知識(shí)、面試、平時(shí)表現(xiàn)的成績(jī)已431的比例錄取,甲、乙、丙誰應(yīng)被錄取?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知n邊形的內(nèi)角和θ=n-2×180°.

1甲同學(xué)說,θ能取360°;而乙同學(xué)說,θ也能取630°.甲、乙的說法對(duì)嗎?若對(duì),求出邊數(shù)n.若不對(duì),說明理由;

2n邊形變?yōu)?/span>n+x邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)D,且DAAB=12.

(1)求∠CDB的度數(shù);

(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案