【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(3,0),(2,﹣3)若△AB′O′△ABO關(guān)于點(diǎn)A的位似圖形,且O′的坐標(biāo)為(﹣1,0),則B′點(diǎn)的坐標(biāo)為( 。

A. , ﹣4) B. , ﹣4) C. , 4) D. , 4)

【答案】A

【解析】

根據(jù)位似圖形的概念畫(huà)出AB′O′的圖像,再根據(jù)相似三角形的性質(zhì)定理得到比例關(guān)系求出各點(diǎn)坐標(biāo).

如下圖,作BCx軸于C,B’C’x軸于C’

A(3,0),B(2,-3),O’(-1,0)

AO=3,AO’=4,

BC=3,OB=2=,
因?yàn)?/span>AB’O’ABO關(guān)于點(diǎn)A的位似圖形,

所以AOB~AO’B’

解得O’B’=,B’C’=4

RtO’B’C',O’C’= =
OC′=O’C’-O0’=-1=,

所以B點(diǎn)的坐標(biāo)為(,-4)

所以A選項(xiàng)是正確的

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】,平分點(diǎn)平分于點(diǎn),且,則的長(zhǎng)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點(diǎn)PBC上,點(diǎn)Q⊙O上,且OP⊥PQ.

(1)如圖當(dāng)PQ∥AB時(shí),求PQ的長(zhǎng);

(2)當(dāng)點(diǎn)PBC上移動(dòng)時(shí),線段PQ長(zhǎng)的最大值為______;此時(shí),∠POQ的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會(huì)大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,從下列條件:①AB=BC,②∠ABC=90°,AC=BD,ACBD中,再選兩個(gè)做為補(bǔ)充,使ABCD變?yōu)檎叫危旅嫠姆N組合,錯(cuò)誤的是( 。

A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+2x軸于點(diǎn)A,交y軸于點(diǎn)A1點(diǎn)A2 , A3 , …在直線l上,點(diǎn)B1 , B2 , B3 , …x軸的正半軸上.若△A1OB1 , △A2B1B2 , △A3B2B3依次均為等腰直角三角形,直角頂點(diǎn)都在x軸上,則第2017個(gè)等腰直角三角形A2017B2016B2017頂點(diǎn)B2017的橫坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司員工分別住在三個(gè)住宅區(qū),區(qū)有人,區(qū)有人,區(qū)有人.三個(gè)區(qū)在一條直線上,位置如圖所示.公司的接送打算在此間只設(shè)一個(gè)?奎c(diǎn),要使所有員工步行到?奎c(diǎn)的路程總和最少,那么?奎c(diǎn)的位置應(yīng)在(

A.區(qū)B.區(qū)C.區(qū)D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D.已知AB=13,CD=6,則Rt△ABC的周長(zhǎng)為(  )

A. 13+5 B. 13+13 C. 13+9 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點(diǎn)E,BED的角平分線EFDC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案