【題目】如圖,線段AB=8cm,C是線段AB上一點(diǎn),AC=3.2cm,MAB的中點(diǎn),NAC的中點(diǎn).

(1)求線段CM的長;

(2)求線段MN的長.

【答案】(1)0.8cm;(2)2.4cm.

【解析】

試題(1)根據(jù)MAB的中點(diǎn),求出AM,再利用CM=AM-AC求得線段CM的長;

(1)根據(jù)NAC的中點(diǎn)求出NC的長度,再利用MN=CM+NC即可求出MN的長度.

試題解析:(1)由AB=8,MAB的中點(diǎn),所以AM=4,

AC=3.2,所以CM=AM-AC=4-3.2=0.8(cm).

所以線段CM的長為0.8cm;

(2)因為NAC的中點(diǎn),所以NC=1.6,

所以MN=NC+CM,1.6+0.8=2.4(cm),

所以線段MN的長為2.4cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCABC中,AB=AB′,B=B,補(bǔ)充條件后仍不一定能保證ABC≌△ABC,則補(bǔ)充的這個條件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,點(diǎn)EAC的中點(diǎn),AC=2AB,BAC的平分線ADBC于點(diǎn)D,作AFBC,連接DE并延長交AF于點(diǎn)F,連接FC.

求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點(diǎn),以O(shè)A為半徑的⊙O與邊BC相切于點(diǎn)E.
(1)若AC=6,BC=10,求⊙O的半徑.
(2)過點(diǎn)E作弦EF⊥AB于M,連接AF,若∠AFE=2∠ABC,求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)與探索。

(1)根據(jù)小明的解答將下列各式因式分解

a2-12a+20;a-1)2-8(a-1)+7; a2-6ab+5b2

(2)根據(jù)小麗的思考解決下列問題:

①說明:代數(shù)式a2-12a+20的最小值為-16.

②請仿照小麗的思考解釋代數(shù)式-(a+1)2+8的最大值為8,并求代數(shù)式-a2+12a-8的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),AOB為等邊三角形,P是x軸上一個動點(diǎn)(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.

(1)求點(diǎn)B的坐標(biāo);

(2)在點(diǎn)P的運(yùn)動過程中,ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請說明理由.

(3)連接OQ,當(dāng)OQAB時,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),雙曲線:y= (x>0)分別與直線OA:y=x和直線AB:y=﹣x+10,交于C,D兩點(diǎn),并且OC=3BD.
(1)求出雙曲線的解析式;
(2)連結(jié)CD,求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察思考

如圖所示,線段AB上的點(diǎn)數(shù)與線段的總條數(shù)有如下關(guān)系:如果線段AB上有3個點(diǎn),那么線段總條數(shù)為3;如果線段AB上有4個點(diǎn),那么線段總條數(shù)為6;如果線段AB上有5個點(diǎn),那么線段總條數(shù)為________.

    3=2+1=

6=3+2+1=

(2)模型構(gòu)建

如果線段上有m個點(diǎn)(包括線段的兩個端點(diǎn)),那么共有________條線段.

(3)拓展應(yīng)用

8位同學(xué)參加班上組織的象棋比賽比賽采用單循環(huán)制(即每兩位同學(xué)之間都要進(jìn)行一場比賽),那么一共要進(jìn)行多少場比賽?

請將這個問題轉(zhuǎn)化為上述模型,并直接應(yīng)用上述模型的結(jié)論解決問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABBCBE⊥AC于點(diǎn)EAD⊥BC于點(diǎn)D,

∠BAD45°,ADBE交于點(diǎn)F,連接CF.

1)求證:BF2AE

2)若CD,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案