【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點(diǎn),以O(shè)A為半徑的⊙O與邊BC相切于點(diǎn)E.
(1)若AC=6,BC=10,求⊙O的半徑.
(2)過點(diǎn)E作弦EF⊥AB于M,連接AF,若∠AFE=2∠ABC,求證:四邊形ACEF是菱形.
【答案】
(1)解:連接OE,設(shè)圓O半徑為r,
在Rt△ABC中,AC=6,BC=10,
根據(jù)勾股定理得:AB= =8,
∵BC與圓O相切,
∴OE⊥BC,
∴∠OEB=∠BAC=90°,
∵∠B=∠B,
∴△BOE∽△BCA,
∴ = ,即 = ,
解得:r=3
(2)解:∵ = ,∠AFE=2∠ABC,
∴∠AOE=2∠AFE=4∠ABC,
∵∠AOE=∠OEB+∠ABC,
∴∠ABC=30°,∠F=60°,
∵EF⊥AD,
∴∠EMB=∠CAB=90°,
∴∠MEB=∠F=60°,CA∥EF,
∴CB∥AF,
∴四邊形ACEF為平行四邊形,
∵∠CAB=90°,OA為半徑,
∴CA為圓O的切線,
∵BC為圓O的切線,
∴CA=CE,
∴平行四邊形ACEF為菱形.
【解析】(1)連接OE,設(shè)圓的半徑為r,在直角三角形ABC中,利用勾股定理求出AB的長,根據(jù)BC與圓相切,得到OE垂直于BC,進(jìn)而得到一對直角相等,再由一對公共角,利用兩角相等的三角形相似得到△BOE與△ABC相似,由相似得比例求出r的值即可;(2)利用同弧所對的圓周角相等,得到∠AOE=4∠B,進(jìn)而求出∠B與∠F的度數(shù),根據(jù)EF與AD垂直,得到一對直角相等,確定出∠MEB=∠F=60°,CA與EF平行,進(jìn)而得到CB與AF平行,確定出四邊形ACEF為平行四邊形,再由∠CAB為直角,得到CA為圓的切線,利用切線長定理得到CA=CE,利用鄰邊相等的平行四邊形為菱形即可得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=﹣2x+2的圖象與x軸、y軸分別交于點(diǎn)A,B.在y軸左側(cè)有一點(diǎn)P(﹣1,a).
(1)如圖1,以線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,且∠BAC=90°,求點(diǎn)C的坐標(biāo);
(2)當(dāng)a=時(shí),求△ABP的面積;
(3)當(dāng)a=﹣2時(shí),點(diǎn)Q是直線y=﹣2x+2上一點(diǎn),且△POQ的面積為5,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請你幫助設(shè)計(jì)出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足為D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為E.
(1)求證:四邊形ADCE是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是正方形?給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,三角形ABC是等邊三角形,D是BC邊上的一點(diǎn),三角形ABD經(jīng)過旋轉(zhuǎn)后到達(dá)三角形ACE的位置.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)如果M是AB的中點(diǎn),那么經(jīng)過上述旋轉(zhuǎn)后,點(diǎn)M到了什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家超市同價(jià)銷售同一款可拆分式驅(qū)蚊器,1套驅(qū)蚊器由1個(gè)加熱器和1瓶電熱蚊香液組成.電熱蚊香液作為易耗品可單獨(dú)購買,1瓶電熱蚊香液的售價(jià)是1套驅(qū)蚊器的.已知電熱蚊香液的利潤率為20%,整套驅(qū)蚊器的利潤率為25%.張阿姨從甲超市買了1套這樣的驅(qū)蚊器,并另外買了4瓶電熱蚊香液,超市從中共獲利10元.
(1)求1套驅(qū)蚊器和1瓶電熱蚊香液的售價(jià);
(2)為了促進(jìn)該款驅(qū)蚊器的銷售,甲超市打8.5折銷售,而乙超市采用的銷售方法是顧客每買1套驅(qū)蚊器送1瓶電熱蚊香液.在這段促銷期間,甲超市銷售2000套驅(qū)蚊器,而乙超市在驅(qū)蚊器銷售上獲得的利潤不低于甲超市的1.2倍.問乙超市至少銷售多少套驅(qū)蚊器?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=8cm,C是線段AB上一點(diǎn),AC=3.2cm,M是AB的中點(diǎn),N是AC的中點(diǎn).
(1)求線段CM的長;
(2)求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片的一角斜折過去,點(diǎn)B落在點(diǎn)D處,EF為折痕,再把FC折過去與FD重合,FH為折痕,問:
(1)EF與FH有什么位置關(guān)系?
(2)∠CFH與∠BEF有什么數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“回”字形的道路寬為1米,整個(gè)“回”字形的長為8米,寬為1米,一個(gè)人從入口點(diǎn)A沿著道路中央走到中點(diǎn)B,他共走了( )
A. 55米 B. 55.5米 C. 56米 D. 56.5米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com