【題目】已知拋物線(a≠0)與x軸交于點A(﹣1,0)和點B(4,0).
(1)求拋物線的函數(shù)解析式;
(2)如圖①,將拋物線沿x軸翻折得到拋物線,拋物線與y軸交于點C,點D是線段BC上的一個動點,過點D作DE∥y軸交拋物線于點E,求線段DE的長度的最大值;
(3)在(2)的條件下,當線段DE處于長度最大值位置時,作線段BC的垂直平分線交DE于點F,垂足為H,點P是拋物線上一動點,⊙P與直線BC相切,且S⊙P:S△DFH=2π,求滿足條件的所有點P的坐標.
【答案】(1);(2)9;(3)(,﹣),(,),(,),(,).
【解析】
(1)將點A(﹣1,0)和點B(4,0)代入即可得到結論;
(2)由對稱性可知,得到拋物線y2的函數(shù)解析式為,求得直線BC的解析式為:y=﹣x+4,設D(m,﹣m+4),E(m,),其中0≤m≤4,得到DE=﹣m+4﹣()=,即可得到結論;
(3)由題意得到△BOC是等腰直角三角形,求得線段BC的垂直平分線為y=x,由(2)知,直線DE的解析式為x=1,得到H(2,2),根據(jù)S⊙P:S△DFH=2π,得到r=,由于⊙P與直線BC相切,推出點P在與直線BC平行且距離為的直線上,于是列方程即可得到結論.
解:(1)將點A(﹣1,0)和點B(4,0)代入得:
解得,
∴拋物線y1的函數(shù)解析式為:;
(2)由對稱性可知,拋物線y2的函數(shù)解析式為:,
∴C(0,4),
設直線BC的解析式為:y=kx+q,
把B(4,0),C(0,4)代入得,k=﹣1,q=4,
∴直線BC的解析式為:y=﹣x+4,設D(m,﹣m+4),E(m,),其中0≤m≤4,
∴DE=﹣m+4﹣()=,
∵0≤m≤4,
∴當m=1時,DEmax=9;
此時,D(1,3),E(1,﹣6);
(3)由題意可知,△BOC是等腰直角三角形,
∴線段BC的垂直平分線為:y=x,由(2)知,直線DE的解析式為:x=1,
∴F(1,1),
∵H是BC的中點,
∴H(2,2),
∴DH=,FH=,
∴S△DFH=1,設⊙P的半徑為r,
∵S⊙P:S△DFH=2π,
∴r=,
∵⊙P與直線BC相切,
∴點P在與直線BC平行且距離為的直線上,
∴點P在直線y=﹣x+2或y=﹣x+6的直線上,
∵點P在拋物線上,
∴,
解得:x1=,x2=,
,
解得:x3=,x4=,
∴符合條件的點P坐標有4個,分別是(,﹣),(,),(,),(,).
科目:初中數(shù)學 來源: 題型:
【題目】鄂北公司以10元/千克的價格收購一批產(chǎn)品進行銷售,為了得到日銷售量y(千克)與銷售價格x(元/千克)之間的關系,經(jīng)過市場調(diào)查獲得部分數(shù)據(jù)如表:
銷售價格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日銷售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)請你根據(jù)表中的數(shù)據(jù)確定y與x之間的函數(shù)表達式;
(2)鄂北公司應該如何確定這批產(chǎn)品的銷售價格,才能使日銷售利潤W1元最大?
(3)若鄂北公司每銷售1千克這種產(chǎn)品需支出a元(a>0)的相關費用,當20≤x≤25時,鄂北公司的日獲利W2元的最大值為1215元,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知在平面直角坐標系中,點、、分別為坐標軸上的三個點,且,,.
(1)求經(jīng)過、、三點的拋物線的解析式;
(2)點是拋物線上一個動點,且在直線的上方,連接、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由;
(3)如圖2,過拋物線頂點作直線軸,交軸于點,點是拋物線上、兩點間的一個動點(點不與、兩點重合),直線、與直線分別交于點、,當點運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知的半徑為 4,是圓的直徑,點是的切線上的一個動點,連接交于點,弦平行于,連接.
(1)試判斷直線與的位置關系,并說明理由;
(2)當__________時,四邊形為菱形;
(3)當___________時,四邊形為正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.
①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;
②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,AB=AC=2,∠BAC=90°,點D是AC的中點,點P是BC邊上的動點,連接PA、PD.則PA+PD的最小值為( 。
A.B.C.D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過點A作AD平分∠BAC交⊙O于點D,過點D作BC的平行線分別交AC、AB的延長線于點E、F,DG⊥AB于點G,連接BD.
(1)求證:△AED∽△DGB;
(2)求證:EF是⊙O的切線;
(3)若,OA=4,求劣弧的長度(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長線于點M,交AB的延長線于點E,切點為F,連接AF交CD于點N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=,AN=,求圓O的直徑的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com