【題目】鄂北公司以10元/千克的價格收購一批產(chǎn)品進行銷售,為了得到日銷售量y(千克)與銷售價格x(元/千克)之間的關系,經(jīng)過市場調查獲得部分數(shù)據(jù)如表:
銷售價格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日銷售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)請你根據(jù)表中的數(shù)據(jù)確定y與x之間的函數(shù)表達式;
(2)鄂北公司應該如何確定這批產(chǎn)品的銷售價格,才能使日銷售利潤W1元最大?
(3)若鄂北公司每銷售1千克這種產(chǎn)品需支出a元(a>0)的相關費用,當20≤x≤25時,鄂北公司的日獲利W2元的最大值為1215元,求a的值.
【答案】(1)y=﹣15x+450;(2)這批產(chǎn)品的銷售價格定為20元,才能使日銷售利潤最大;(3)a的值為2
【解析】
(1)由表格數(shù)據(jù)變化規(guī)律可知:y是x的一次函數(shù),然后利用待定系數(shù)法求一次函數(shù)解析式即可;
(2)根據(jù)“總利潤=每千克利潤×千克數(shù)”即可求出W1與x的函數(shù)關系式,然后利用二次函數(shù)求最值即可;
(3)根據(jù)“總利潤=每千克利潤×千克數(shù)”即可求出W2與x的函數(shù)關系式,然后根據(jù)對稱軸的位置分類討論,分別求出最值,然后列出方程即可求出結論.
解:(1)由表格可知: x每增加5,y都下降75
∴y是x的一次函數(shù)
設y與x之間的函數(shù)表達式為y=kx+b,
則,
解得:k=﹣15,b=450,
∴y與x之間的函數(shù)表達式為:y=﹣15x+450;
(2)設日銷售利潤W1=y(x﹣10)=(﹣15x+450)(x﹣10)
即W1=﹣15x2+600x﹣4500
∵
∴當x=﹣=20時,W1有最大值1500元,
答:這批產(chǎn)品的銷售價格定為20元,才能使日銷售利潤最大;
(3)日獲利W2=y(x﹣10﹣a)=(﹣15x+450)(x﹣10﹣a),
即W2=﹣15x2+(600+15a)x﹣(450a+4500),
則對稱軸為x=20+a
①若20+a ≥25,即a≥10時,則當x=25時,W2有最大值,
即W2=1125﹣75a<1215(不合題意);
②若20<20+a <25,即0<a<10時,則當x=20+a時,W2有最大值,
將x=20+a代入,可得W2=a2﹣150a+1500,
當W2=1215時,a2﹣150a+1500=1215,解得a1=2,a2=38(舍去),
綜上所述,a的值為2
科目:初中數(shù)學 來源: 題型:
【題目】為了參加西部博覽會,資陽市計劃印制一批宣傳冊.該宣傳冊每本共10頁,由A、B兩種彩頁構成.已知A種彩頁制版費300元/張,B種彩頁制版費200元/張,共計2400元.(注:彩頁制版費與印數(shù)無關)
(1)每本宣傳冊A、B兩種彩頁各有多少張?
(2)據(jù)了解,A種彩頁印刷費2.5元/張,B種彩頁印刷費1.5元/張,這批宣傳冊的制版費與印刷費的和不超過30900元.如果按到資陽展臺處的參觀者人手一冊發(fā)放宣傳冊,預計最多能發(fā)給多少位參觀者?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,平面直角坐標系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點P是 y2 上的一個動點,則點P到直線 y1 的最短距離為()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點,線段與軸平行,且,拋物線(常數(shù))經(jīng)過點
(1)求的解析式及其對稱軸和頂點坐標
(2)判斷點是否在上,并說明理由;
(3)若線段以每秒2個單位的速度向下平移,設平移的時間為秒
①若與線段總有公共點,直接寫出的取值范圍
②若同時以每秒3個單位的速度向下平移,在軸及其右側圖像與直線總有兩個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點C、B分別在軸、軸上,△ABC是等腰直角三角形,∠BAC=90°,已知A(2,2)、P(1,0).M為BC的中點,則PM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,點P在邊AB上,點D、Q分別為邊BC上的點,線段AD的延長線與線段PQ的延長線交于點F,連接CP交AF于點E,若∠BPF=∠APC,FD=FQ.
(1)如圖1,求證:AF⊥CP;
(2)如圖2,作∠AFP的平分線FM交AB于點M,交BC于點N,若FN=MN,求證:;
(3)在(2)的條件下,連接DM、MQ,分別交PC于點G、H,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小明家住在30米高的A樓里,小麗家住在B樓里,B樓坐落在A樓的正北面,已知當?shù)囟林形?/span>12時太陽光線與水平面的夾角為30°.
(1)如果A、B兩樓相距16米,那么A樓落在B樓上的影子有多長?
(2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應是多少米?(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線(a≠0)與x軸交于點A(﹣1,0)和點B(4,0).
(1)求拋物線的函數(shù)解析式;
(2)如圖①,將拋物線沿x軸翻折得到拋物線,拋物線與y軸交于點C,點D是線段BC上的一個動點,過點D作DE∥y軸交拋物線于點E,求線段DE的長度的最大值;
(3)在(2)的條件下,當線段DE處于長度最大值位置時,作線段BC的垂直平分線交DE于點F,垂足為H,點P是拋物線上一動點,⊙P與直線BC相切,且S⊙P:S△DFH=2π,求滿足條件的所有點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com