8、若直線y=x-m與拋物線y=x2-x-m的交點(diǎn)在x軸上,則m的取值一定是( 。
分析:令y=0分別得到x和m的方程,再進(jìn)一步運(yùn)用代入消元法求得m的值.
解答:解:令y=0,則有x-m=0①,x2-x-m=0②,
由①,得x=m③,
把③代入②,得
m2-m-m=0,
解得m=0或2.
故選C.
點(diǎn)評:此題考查了函數(shù)圖象與坐標(biāo)軸的交點(diǎn)的求法以及一元二次方程的解法.函數(shù)圖象與x軸的交點(diǎn),即令y=0;函數(shù)圖象與y軸的交點(diǎn),即令x=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 華東師大(新課標(biāo)2001/3年初審) 華東師大版 題型:044

已知,如圖,在平面直角坐標(biāo)系xOy中,拋物線l1的解析式為y=-x2,將拋物線l1平移后得到拋線物l2,若拋物線l2經(jīng)過點(diǎn)(0,2),且其頂點(diǎn)A的橫坐標(biāo)為最小正整數(shù).

(1)求拋物線l2的解析式;

(2)說明將拋物線l1如何平移得到拋物線l2

(3)若將拋物線l2沿其對稱軸繼續(xù)上下平移,得到拋物線l3,設(shè)拋物線l3的頂點(diǎn)為B,直線OB與拋物線l3的另一個(gè)交點(diǎn)為C.當(dāng)OB=OC時(shí),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:解答題

如圖,在平面直角坐標(biāo)系中,一拋物線的對稱軸為直線x=1,與y軸負(fù)半軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0),且OB=OC。
(1)求此拋線的解析式;
(2)若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積;
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn)(其中點(diǎn)M在點(diǎn)N的右側(cè)),在x軸上是否存在點(diǎn)Q,使△MNQ為等腰三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河南省期中題 題型:解答題

已知,如圖,在平面直角坐標(biāo)系中,拋物線的解析式為,將拋物線平移后得到拋線物,若拋物線經(jīng)過點(diǎn)(0,2),且其頂點(diǎn)A的橫坐標(biāo)為最小正整數(shù)。
(1 )求拋物線l2 的解析式;
(2 )說明將拋物線l1 如何平移得到拋物線l2 ;
(3 )若將拋物線l2 沿其對稱軸繼續(xù)上下平移,得到拋物線l3 ,設(shè)拋物線l3 的頂點(diǎn)為B ,直線OB 與拋物線l3 的另一個(gè)交點(diǎn)為C .當(dāng)OB=OC 時(shí),求點(diǎn)C 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知m、n是方程的兩個(gè)實(shí)數(shù)根,且m<n,拋物線的圖像經(jīng)過點(diǎn)A(m,0)、B(0,n).  

(1)求這個(gè)拋物線的解析式;

(2)設(shè)(1)中拋物線與x軸的另一交點(diǎn)為C,拋物線的

頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;

(注:拋物線的頂點(diǎn)坐標(biāo)為

(3)P是線段OC上的一點(diǎn),過點(diǎn)P作PH⊥x軸,與拋

物線交于H點(diǎn),若直線BC把△PCH分成面積之比

為2:3的兩部分,請求出P點(diǎn)的坐標(biāo).              

查看答案和解析>>

同步練習(xí)冊答案