【題目】如圖,⊙O是以AB為直徑的ABC的外接圓,點D是劣弧的中點,連結AD并延長,與過C點的直線交于PODBC相交于點E

1)求證:OEAC;

2)連接CD,若∠PCD=∠PAC,試判斷直線PC與⊙O的位置關系,并說明理由.

3)在(2)的條件下,當AC6,AB10時,求切線PC的長.

【答案】1)證明見解析;(2PC為⊙O的切線,理由見解析;(3PC=15

【解析】

1)利用垂徑定理證明 再證明,利用三角形中位線定理可得結論;(2)連接CODC,證明∠OCP=∠OBC+BAC,即可得到結論;

3)先分別求解 再證明PCD∽△PAC,從而可得答案.

1)證明:∵AB為直徑

∴∠ACB90°

ACBC,

又∵D中點,

ODBC,ODAC,

又∵OAB中點,

OEAC;

2)解:PC為⊙O的切線,

理由:連接CO,DC,

COOB,

∴∠OCB=∠OBC,

∵∠BCD=∠BAD,∠PCD=∠PAC,

∴∠OCB+BCD+PCD

=∠OBC+BAD+PAC,

∴∠OCP=∠OBC+BAC,

又∵AB為⊙O的直徑,

∴∠OBC+BAC90°,

∴∠OCP90°,

PC為⊙O的切線;

3)解:

由(1)可知,

OE3BE4,DE2

RtBEDRtABD中,

由勾股定理得:BD2,

AD4,

∵點D是劣弧的中點,

CD2,

∵∠PPCDPAC的公共角,

由∠PCD=∠PAC,

PCD∽△PAC

,

PC2PDAP

,

PC

,

解得:PD,

PC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點得到第一個正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點得到第二個正方形A2B2C2D2…,以此類推,則第六個正方形A6B6C6D6周長是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C1處,折痕為EF,若AB4BC8,則線段EF的長度為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄂爾多斯市某百貨商場銷售某一熱銷商品A,其進貨和銷售情況如下:用16000元購進一批該熱銷商品A,上市后很快銷售一空,根據(jù)市場需求情況,該商場又用7500元購進第二批該商品,已知第二批所購件數(shù)是第一批所購件數(shù)的一半,且每件商品的進價比第一批的進價少10元.

1)求商場第二批商品A的進價;

2)商場同時銷售另一種熱銷商品B,已知商品B的進價與第二批商品A的進價相同,且最初銷售價為165元,每天能賣出125件,經市場銷售發(fā)現(xiàn),若售價每上漲1元,其每天銷售量就減少5件,問商場該如何定售價,每天才能獲得最大利潤?并求出每天的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE、BF,交點為G.

(1)求證:AE⊥BF;

(2)將△BCF沿BF對折,得到△BPF(如圖2),延長FP交BA的延長線于點Q,求sin∠BQP的值;

(3)將△ABE繞點A逆時針方向旋轉,使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點N,當正方形ABCD的邊長為4時,直接寫出四邊形GHMN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學訓練某種運算技能,每次訓練完成相同數(shù)量的題目,各次訓練題目難度相當.當訓練次數(shù)不超過15次時,完成一次訓練所需要的時間y(單位:秒)與訓練次數(shù)x(單位:次)之間滿足如圖所示的反比例函數(shù)關系.完成第3次訓練所需時間為400秒.

1)求yx之間的函數(shù)關系式;

2)當x的值為68,10時,對應的函數(shù)值分別為y1y2,y3,比較(y1-y2)與(y2-y3)的大。 y1-y2 y2-y3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4AD5,連接ACOAC的中點,MAD上一點,且MD1,PBC上一動點,則PMPO的最大值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8,MAB的中點,PBC邊上的動點,連結PM,以點P為圓心,PM長為半徑作⊙P

1)當BP   時,MBPDCP;

2)當⊙P與正方形ABCD的邊相切時,求BP的長;

3)設⊙P的半徑為x,請直接寫出正方形ABCD中恰好有兩個頂點在圓內的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點O為坐標原點,拋物線yax2+bx+cy軸交于點A0,6),與x軸交于點B(﹣2,0),C6,0).

1)直接寫出拋物線的解析式及其對稱軸;

2)如圖2,連接AB,AC,設點Pm,n)是拋物線上位于第一象限內的一動點,且在對稱軸右側,過點PPDAC于點E,交x軸于點D,過點PPGABAC于點F,交x軸于點G.設線段DG的長為d,求dm的函數(shù)關系式,并注明m的取值范圍;

3)在(2)的條件下,若PDG的面積為

①求點P的坐標;

②設M為直線AP上一動點,連接OM交直線AC于點S,則點M在運動過程中,在拋物線上是否存在點R,使得ARS為等腰直角三角形?若存在,請直接寫出點M及其對應的點R的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案