【題目】如圖,在正方形中,為線段上的動(dòng)點(diǎn)(不含端點(diǎn)),將沿著翻折得到,
(1)如圖1,當(dāng),求長(zhǎng);
(2)如圖2,為線段上的點(diǎn),當(dāng)時(shí),求點(diǎn)由到的運(yùn)動(dòng)過(guò)程中,線段掃過(guò)的圖形與重疊部分的面積;
(3)如圖3,在上,連接,將沿著翻折得到,連結(jié),問(wèn)是否存在點(diǎn),使得與相似?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)重疊部分的面積是;(3)存在,.
【解析】
(1)連接,根據(jù)折疊的性質(zhì)證是等邊三角形即可求解;
(2)因?yàn)?/span>在運(yùn)動(dòng)的過(guò)程中始終都等于DA,即點(diǎn)到D點(diǎn)的距離是定值,故在點(diǎn)由到的運(yùn)動(dòng)過(guò)程中,掃過(guò)的圖形是以D為圓心,以DA為半徑的扇形,由此確定掃過(guò)的圖形與重合部分是弓形,△(恰好在CF上時(shí))是等邊三角形,根據(jù)扇形及三角形的面積公式求解即可;
(3)先根據(jù)與相似,判定是直角三角形,分時(shí)、時(shí)兩種情況討論求解即可.
(1)如圖,連接,
根據(jù)折疊的性質(zhì)可得:
是等邊三角形
(2)如圖,
∵四邊形ABCD是正方形
∴∠BCD=90°,CD=AD=AB=2
∵
∴∠FCD=60°
在點(diǎn)由到的運(yùn)動(dòng)過(guò)程中,掃過(guò)的圖形是扇形,
當(dāng)與B重合時(shí),點(diǎn)與重合,
∴掃過(guò)的圖形與重合部分是弓形,
當(dāng)運(yùn)動(dòng)到如圖位置時(shí)(恰好在CF上時(shí)),=DC
∴△是等邊三角形,這時(shí)
過(guò)DE⊥CF于E點(diǎn)
重疊部分的面積是:
(3) 如圖,
與關(guān)于對(duì)稱
又
由折疊可知,
若與相似,則必是直角三角形
①當(dāng)時(shí)
②當(dāng)時(shí),此時(shí)落在上,
過(guò)作,
在中,
又在上
與矛盾
綜上所述
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=(k>0,x>0)的圖象與等邊三角形OAB的邊OA,AB分別交于點(diǎn)M,N,且OM=2MA,若AB=3,那么點(diǎn)N的橫坐標(biāo)為( )
A.B.C.4D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線y=kx(k<0)相交于點(diǎn)A、B,以AB為底作等腰三角形,使∠ACB=120°,且點(diǎn)C的位置隨著k的不同取值而發(fā)生變化,但點(diǎn)C始終在某一函數(shù)圖象上,則這個(gè)圖象所對(duì)應(yīng)的函數(shù)解析式為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根,且其中一根為另一根的2倍,則稱這樣的方程為“倍根方程”,以下關(guān)于倍根方程的說(shuō)法,不正確的是( )
A.方程是倍根方程;
B.若是倍根方程,則;
C.若方程是倍根方程,且相異兩點(diǎn)都在拋物線上,則方程的一個(gè)根為;
D.若點(diǎn)在反比例函數(shù)的圖象上,則關(guān)于的方程是倍根方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平和中學(xué)以小元所在班級(jí)為例,對(duì)該班學(xué)生最喜愛(ài)參加的各類體育運(yùn)動(dòng)項(xiàng)目的情況進(jìn)行了調(diào)査統(tǒng)計(jì)(最喜愛(ài)的項(xiàng)目只能選一項(xiàng)).并把調(diào)查的結(jié)果繪制成了如下圖所示的兩種不完全統(tǒng)計(jì)圖,請(qǐng)你根據(jù)信息回答下列問(wèn)題:
(1)小元所在的班級(jí)共有多少名學(xué)生?
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖
(3)如果平和中學(xué)總計(jì)有800名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡參加籃球和最喜歡乒乓球運(yùn)動(dòng)共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)分別在,軸上,且.將正方形繞原點(diǎn)順時(shí)針旋轉(zhuǎn),且,得到正方形,再將正方繞原點(diǎn)順時(shí)針旋轉(zhuǎn),且,得到正方形,以此規(guī)律,得到正方形,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)為了方便游客登上山頂,計(jì)劃從山底A點(diǎn)到山頂C點(diǎn)修建觀光纜車,此時(shí)從A點(diǎn)觀測(cè)C點(diǎn)的仰角為45度;施工組經(jīng)過(guò)實(shí)地勘察后,為了安全,決定將觀光纜車的鋼索改為AD、CD兩段,D點(diǎn)是半山腰上距離地面AB30米的一個(gè)支點(diǎn),從A點(diǎn)觀測(cè)D點(diǎn)的仰角為30°.從D點(diǎn)觀測(cè)山頂C點(diǎn)的仰角為75°,請(qǐng)你通過(guò)自己學(xué)過(guò)的知識(shí)來(lái)求出這座山的高度BC約為多少米.(結(jié)果保留整數(shù).可能用到的數(shù)據(jù):≈1.73.sin75°≈0.96.cos75°≈0.26.tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每到春夏交替時(shí)節(jié),楊樹(shù)的楊絮漫天飛舞,易引發(fā)皮膚病、呼吸道疾病等,給人們生活造成困擾,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(調(diào)查問(wèn)卷如下),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖:
調(diào)查問(wèn)卷
治理?xiàng)钚酰耗x哪一項(xiàng)? (每人只選一項(xiàng))
A.減少楊樹(shù)新增面積,控制楊樹(shù)每年的栽種量;
B.調(diào)整樹(shù)種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹(shù);
C.選育無(wú)絮楊品種,并推廣種植;
D.對(duì)楊樹(shù)注射生物干擾素,避免產(chǎn)生飛絮;
E.其他.
根據(jù)以上信息,解答下列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,求扇形的圓心角度數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該市約有萬(wàn)人,請(qǐng)估計(jì)贊同“選育無(wú)絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com