【題目】直線 ABCD,直線 a 分別交 AB、CD 于點(diǎn) EF,點(diǎn) M 在線段 EF 上,點(diǎn) P 直線 CD 上的一個(gè)動(dòng)點(diǎn)(點(diǎn) P 不與點(diǎn) F 重合)

(1)如圖 1,當(dāng)點(diǎn) P 在射線 FC 上移動(dòng)時(shí),∠FMP+∠FPM 與∠AEF 有什么數(shù)量關(guān)系? 請(qǐng)說(shuō)明理由;

(2)如圖 2,當(dāng)點(diǎn) P 在射線 FD 上移動(dòng)時(shí),∠FMP+∠FPM 與∠AEF 有什么數(shù)量關(guān)系? 請(qǐng)說(shuō)明理由.

【答案】1)∠AEF=MPF+FPM;(2)∠FMP+FPM+AEF=180°;

【解析】

1)由ABCD,利用兩直線平行,同旁內(nèi)角互補(bǔ),可得∠AEF十∠EFC=180°,又由三角形內(nèi)角和定理,即可得∠FMP+FPM+EFC=180°,則可得∠FMP+FPM=AEF;

2)由ABCD,利用兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠AEF=EFD,又由三角形內(nèi)角和定理,即可得∠FMP+FPM+EFD=180°,則可得∠FMP+FPM+AEF=180°.

(1)FMP+FPM=AEF

理由:∵ABCD,

∴∠AEF=DFM,

又∵∠FMP+FPM=DFM,

∴∠FMP+FPM=AEF;

(2)FMP+FPM與∠AEF互補(bǔ)(或∠FMP+FPM+AEF=180)(8)

理由:∵ABCD

∴∠AEF=EFD(兩直線平行,內(nèi)錯(cuò)角相等),

∵∠FMP+FPM+EFD=180(三角形內(nèi)角和定理)

∴∠FMP+FPM+AEF=180(等量代換).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD//BC,BD=BC,∠ABC=900

(1)畫(huà)出的高CE;;

(2)請(qǐng)寫(xiě)出圖中的一對(duì)全等三角形(不添加任何字母),并說(shuō)明理由;

(3)若,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)設(shè)了豐富多彩的實(shí)踐類拓展課程,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類課程(要求人人參與,每人只能選擇一門(mén)課程).為了解學(xué)生喜愛(ài)的拓展課類別,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問(wèn)題:

(1)此次共調(diào)查了多少人?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整

(3)求文學(xué)類課程在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類拓展課的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在中,平分),上一點(diǎn),且于點(diǎn).

1)當(dāng)時(shí),求的度數(shù);

2)若,,請(qǐng)結(jié)合(1)的計(jì)算猜想、之間的數(shù)量關(guān)系,直接寫(xiě)出答案,不說(shuō)明理由;(用含有、的式子表示

3)如圖②,當(dāng)點(diǎn)的延長(zhǎng)線上時(shí),其余條件不變,則(2)中的結(jié)論還成立嗎?若成立,請(qǐng)說(shuō)明為什么;若不成立,請(qǐng)寫(xiě)出成立的結(jié)論,并說(shuō)明為什么.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD中,點(diǎn)E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)E落在直線BC上的點(diǎn)F處,則F、C兩點(diǎn)的距離為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將□ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F

⑴求證:△ABF≌△ECF;⑵若∠AFC=2D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD對(duì)折,使它落在斜邊AB上,且與AE重合,則CD等于( )

A. 3cmB. 4cmC. 5cmD. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列分式方程

(1) ; (2) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC BDE 都是等邊三角形,A、B、D 三點(diǎn)共線.下列結(jié)論:①ABCD;②BFBG;③HB 平分∠AHD;④∠AHC60°,⑤△BFG 是等邊三角形.其中正確的有____________(只填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案