【題目】一個(gè)不透明的袋子里有若干個(gè)小球,它們除了顏色外,其它都相同,甲同學(xué)從袋子里隨機(jī)摸出一個(gè)球,記下顏色后放回袋子里,搖勻后再次隨機(jī)摸出一個(gè)球,記下顏色,…,甲同學(xué)反復(fù)大量實(shí)驗(yàn)后,根據(jù)白球出現(xiàn)的頻率繪制了如圖所示的統(tǒng)計(jì)圖,則下列說(shuō)法正確的是( 。

A. 袋子一定有三個(gè)白球

B. 袋子中白球占小球總數(shù)的十分之三

C. 再摸三次球,一定有一次是白球

D. 再摸1000次,摸出白球的次數(shù)會(huì)接近330次

【答案】D

【解析】

試題觀察折線(xiàn)統(tǒng)計(jì)圖發(fā)現(xiàn)隨著摸球次數(shù)的增多白球出現(xiàn)的頻率逐漸穩(wěn)定在某一常數(shù)附近,可以用此常數(shù)表示白球出現(xiàn)的概率,從而確定正確的選項(xiàng).

解:觀察折線(xiàn)統(tǒng)計(jì)圖發(fā)現(xiàn)隨著摸球次數(shù)的增多白球出現(xiàn)的頻率逐漸穩(wěn)定在某一33%附近,

白球出現(xiàn)的概率為33%,

再摸1000次,摸出白球的次數(shù)會(huì)接近330次,正確,其他錯(cuò)誤,

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家以A、B兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價(jià)分別為袋中兩種原料的成本價(jià)之和.若甲產(chǎn)品每袋售價(jià)72元,則利潤(rùn)率為20%.某節(jié)慶日,廠家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過(guò)100袋,會(huì)計(jì)在核算成本的時(shí)候把A原料和B原料的單價(jià)看反了,后面發(fā)現(xiàn)如果不看反,那么實(shí)際成本比核算時(shí)的成本少500元,那么廠家在生產(chǎn)甲乙兩種產(chǎn)品時(shí)實(shí)際成本最多為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,DEACCECA,直線(xiàn)ECDA延長(zhǎng)線(xiàn)于F.

(1)CD6,求DE的長(zhǎng);

(2)求證:AEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴(kuò)大銷(xiāo)售,增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出5件。若商場(chǎng)平均每天要盈利1600元,每件襯衫應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中放入一個(gè)矩形紙片ABCO,將紙片翻折后,點(diǎn)B恰好落在軸上,記為,折痕為CE.直線(xiàn)CE的關(guān)系式是,與軸相交于點(diǎn)F,且AE=3.

(1)求OC長(zhǎng)度;

(2)求點(diǎn)的坐標(biāo);

(3)求矩形ABCO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店為吸引顧客設(shè)計(jì)了促銷(xiāo)活動(dòng):在一不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”“10元”“20元”“30元”的字樣.規(guī)定:顧客一次性消費(fèi)滿(mǎn)400,就可以在箱子里先后摸出兩個(gè)小球(每一次摸出后不放回),某顧客剛好消費(fèi)400,則該顧客獲得的金額不低于30元的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC中,CDABD,且BD=4,AD=6,CD=8

1)求證:∠ACB=ABC;

2)如圖2,EAC的中點(diǎn),連結(jié)DE.動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線(xiàn)段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線(xiàn)段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),

①若MNBC平行,求t的值;

②問(wèn)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,分別是的中點(diǎn),連接,

(1)求證:

(2)試確定,當(dāng)菱形再滿(mǎn)足一個(gè)什么條件時(shí),四邊形為矩形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如圖1,在ABC看,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱(chēng)A'B'C'ABC旋補(bǔ)三角形”,AB'C'B'C'上的中線(xiàn)AD叫做ABC旋補(bǔ)中線(xiàn),點(diǎn)A叫做旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補(bǔ)三角形”,ADABC旋補(bǔ)中線(xiàn)”.

①如圖2,當(dāng)ABC為等邊三角形時(shí),ADBC的數(shù)量關(guān)系為AD=   BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為   

猜想論證:

(2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案