【題目】如圖1,△ABC中,CDABD,且BD=4,AD=6,CD=8

1)求證:∠ACB=ABC;

2)如圖2,EAC的中點,連結(jié)DE.動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時另一個點也停止運動.設點M運動的時間為t(秒),

①若MNBC平行,求t的值;

②問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

【答案】1)見解析;(2)①t=5;②t值為910

【解析】

1)先求出AB的長,再利用勾股定理求出AC的長,由AB=AC,等邊對等角即可得出∠ACB=ABC;(2)① 由上題知AB=AC,因此當AM=AN時, MNBC ,于是結(jié)合路程的關系列方程,求出t即可;②因為BD<DE,當MBD上時,△BDE不可能構(gòu)成等腰三角形,當MDA上時,分三種情況分別求解,若DE=DM,有t-4=5,求出t即可;若如果ED=EM,點M剛好運動到點A, 顯然t=10; 如果MD=ME,過EEHAD,把EHHM分別用含t的代數(shù)式表示,在△EHM中,再利用勾股定理列式求出t即可;

解:

1)證明:∵AB=AD+BD=6+4=10,

AC=,

AB=AC

ACB=ABC.

2)解:如圖,

①由題意得BM=tAN=t,則AM=10-t,

MNBC時,AM=AN

10t=t,

t=5;

②當點MDA上,即4t≤10時,MDE為等腰三角形,有3種可能.

∵CD⊥AB,

∴∠CDA=90°,

∵E為AC中點,

∴DE=AC=5,

如果DE=DM,則t4=5,

t=9

如果ED=EM,則點M運動到點A

t=10;

如果MD=ME=t4,過EEHAD,

∵EH⊥AD,CD⊥AD,

∴EH∥CD,

∵E為AC中點,

∴AE=CD=4,

中,

DH=,

∴HM=DM-DH=t-4-3=t-7,

EHM中,

則(t42﹣(t72=42

t= ;

綜上所述,符合要求的t值為910 ;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,BEEF,DFEF,BE=2.5cm,DF=4cm,那么EF的長為(

A. 6.5cm B. 6cm C. 5.5cm D. 4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

如圖1,已知△ABC為等邊三角形,點D,E分別在邊AB、AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.

(1)觀察猜想在圖1中,線段PMPN的數(shù)量關系是   ,MPN的度數(shù)是   

(2)探究證明把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,

①判斷△PMN的形狀,并說明理由;

②求∠MPN的度數(shù);

(3)拓展延伸若△ABC為直角三角形,∠BAC=90°,AB=AC=10,點DE分別在邊AB,AC上,AD=AE=4,連接DC,點M,P,N分別為DE,DC,BC的中點.把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),如圖3,請直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子里有若干個小球,它們除了顏色外,其它都相同,甲同學從袋子里隨機摸出一個球,記下顏色后放回袋子里,搖勻后再次隨機摸出一個球,記下顏色,…,甲同學反復大量實驗后,根據(jù)白球出現(xiàn)的頻率繪制了如圖所示的統(tǒng)計圖,則下列說法正確的是( 。

A. 袋子一定有三個白球

B. 袋子中白球占小球總數(shù)的十分之三

C. 再摸三次球,一定有一次是白球

D. 再摸1000次,摸出白球的次數(shù)會接近330次

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】扶貧攻堅活動中,城南中學計劃選購甲、乙兩種物品慰問貧困戶.已知甲物品的單價比乙物品的單價高10元,若用500元單獨購買甲物品與450元單獨購買乙物品的數(shù)量相同.

(1)請問甲、乙兩種物品的單價各為多少?

(2)如果該單位計劃購買甲、乙兩種物品共55件,總費用不少于5000元且不超過5020元,通過計算得出共有幾種選購方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小南、小銘和兩個陌生人甲、乙同在如圖所示的地下車庫等電梯,已知兩個陌生人到14層的任意一層樓出電梯.

(1)用列表或畫樹狀圖求出甲、乙兩人在同一層樓出電梯的概率;

(2)小南和小銘比賽,規(guī)則是:若甲、乙在同一層或相鄰樓層出電梯,則小南勝,否則小銘勝.該游戲是否公平?若公平,說明理由;若不公平,請修改游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將ADF繞點A順時針旋轉(zhuǎn)90°后,得到ABQ,連接EQ,求證:

(1)EA是∠QED的平分線;

(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小方格的邊長都為1,△各頂點都在格點上.若點的坐標為(0,3),請按要求解答下列問題:

1)在圖中建立符合條件的平面直角坐標系;

2)根據(jù)所建立的坐標系,寫出點和點的坐標;

3)畫出△關于軸的對稱圖形△

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.

(1)若BPQABC相似,求t的值;

(2)連接AQ、CP,若AQCP,求t的值.

查看答案和解析>>

同步練習冊答案