【題目】如圖,邊長為1的正方形ABCD的對角線AC,BD相交于點O,直角∠MPN的頂點P與點O重合,直角邊PM,PN分別與OA,OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結(jié)論中正確的是_____.
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE=;(4)OGBD=AE2+CF2.
【答案】(1)(2)(4)
【解析】
(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得結(jié)論;(2)由(1)易證得S四邊形OEBF=S△BOC=S正方形ABCD,則可證得結(jié)論; (3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得答案;(4)易證得△OEG∽△OBE,然后由相似三角形的對應(yīng)邊成比例,證得OGOB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論.
∵四邊形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
∴∠BOF+∠COF=90°,
∵∠EOF=90°,
∴∠BOF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE和△COF中,
,
∴△BOE≌△COF(ASA),
∴OE=OF,BE=CF,
∴EF=OE;故(1)正確;
∵S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,
∴S四邊形OEBF:S正方形ABCD=1:4;故(2)正確;
過點O作OH⊥BC,
∵BC=1,
∴OH=BC=,
設(shè)AE=x,則BE=CF=1-x,BF=x,
∴S△BEF+S△COF=BEBF+CFOH=x(1-x)+(1-x)×=-(x-)2+,
∵a=-<0,
∴當(dāng)x=時,S△BEF+S△COF最大;
即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE=;故(3)錯誤;
∵∠EOG=∠BOE,∠OEG=
∴△OEG∽△OBE,
∴OE:OB=OG:OE,
∴OGOB=OE2,
∵OB=BD,OE=EF,
∴OGBD=EF2,
∵在△BEF中,EF2=BE2+BF2,
∴EF2=AE2+CF2,
∴OGBD=AE2+CF2.故(4)正確,
綜上所述:(1)(2)(4)正確,
故答案為:(1)(2)(4)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點,在反比例函數(shù)圖象上,軸于點,軸于點,.
(1)求,的值并寫出反比例函數(shù)的表達(dá)式;
(2)連接,是線段上一點,過點作軸的垂線,交反比例函數(shù)圖象于點,若,求出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一個3×3的正方形網(wǎng)格,其右下角格點(小正方形的頂點)A的坐標(biāo)為(﹣1,1),左上角格點B的坐標(biāo)為(﹣4,4),若分布在過定點(﹣1,0)的直線y=﹣k(x+1)兩側(cè)的格點數(shù)相同,則k的取值可以是( 。
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王強(qiáng)與李明兩位同學(xué)在學(xué)習(xí)“概率”時,做拋骰子(正方體形狀)試驗,他們共拋了54次,出現(xiàn)向上點數(shù)的次數(shù)如下表:
向上點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 6 | 9 | 5 | 8 | 16 | 10 |
(1)請計算出現(xiàn)向上點數(shù)為3的頻率及出現(xiàn)向上點數(shù)為5的頻率;
(2)王強(qiáng)說:“根據(jù)試驗,可知一次試驗中出現(xiàn)向上點數(shù)為5的概率最大.”李明說:“如果拋540次,那么出現(xiàn)向上點數(shù)為6的次數(shù)正好是100次.”請判斷王強(qiáng)和李明說法的對錯.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,點A、B分別在邊ON和OM上(∠OAB≠45°).
(1)根據(jù)要求,利用尺規(guī)作圖,補(bǔ)全圖形:
第①步:作∠MON的平分線OC,作線段AB的垂直平分線l,OC和l交于點P,第②步:連接PA、PB;
(2)結(jié)合補(bǔ)完整的圖形,判斷PA和PB有什么數(shù)量關(guān)系和位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,并且AD是⊙O的直徑,C是的中點,AB和DC的延長線交于⊙O外一點E.
求證:(1)∠EBC=∠D;
(2)BC=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是交警在一個路口統(tǒng)計的某個時段往車輛的車速情況(單位:千米/時).則這些車輛行駛速度的中位數(shù)是________、眾數(shù)是________、平均數(shù)是________(結(jié)果精確到).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片ABC中,∠B=2∠C,把三角形紙片沿直線AD折疊,點B落在AC邊上的E處,那么下列等式成立的是( 。
A.AC=AD+BDB.AC=AB+BDC.AC=AD+CDD.AC=AB+CD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com