【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=k 為常數(shù), k≠0)的圖象交于 A(1,a)、Bb,1)兩點(diǎn).

(1)求點(diǎn) A、B 的坐標(biāo)及反比例函數(shù)的表達(dá)式

(2) x 軸上找一點(diǎn),使 PA+PB 的值最小,求滿足條件的點(diǎn) P 的坐標(biāo)

【答案】(1);(2)

【解析】

(1)將x=1代入直線AB的函數(shù)表達(dá)式中即可求出點(diǎn)A的坐標(biāo),由點(diǎn)A的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出反比例函數(shù)的表達(dá)式,聯(lián)立兩函數(shù)表達(dá)式成方程組,通過解方程組即可求出點(diǎn)B的坐標(biāo);
(2)作B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)B′(2,-1),連接AB’,交x軸于點(diǎn)P,連接PB,由兩點(diǎn)之間線段最短可得出此時(shí)PA+PB取最小值,根據(jù)點(diǎn)A、B′的坐標(biāo)利用待定系數(shù)法可求出直線AB′的函數(shù)表達(dá)式,再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)P的坐標(biāo).

在一次函數(shù)的圖象上,

,

在反比例為常數(shù),且的圖象上,

反比例函數(shù)的表達(dá)式為

聯(lián)立一次函數(shù)與反比例函數(shù)關(guān)系式成方程組,得:

,解得:,

B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn),連接,交x軸于點(diǎn)P,連接PB,如圖所示.

點(diǎn)B、關(guān)于x軸對(duì)稱,

點(diǎn)A、P、三點(diǎn)共線,

此時(shí)取最小值.

設(shè)直線的函數(shù)表達(dá)式為,

代入,

,解得:

直線的函數(shù)表達(dá)式為

當(dāng)時(shí),,

滿足條件的點(diǎn)P的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰ABC中,AB=AC,∠BAC120°,ADBC于點(diǎn)D,點(diǎn)PBA延長(zhǎng)線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OPOC,

(1)求∠APO+DCO的度數(shù);

(2)求證:點(diǎn)POC的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,,,把一條長(zhǎng)為2016個(gè)單位長(zhǎng)度且沒有彈性的細(xì)線線的粗細(xì)忽略不計(jì)的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RABC中,∠ACB90°,AC6,BC8EAC上一點(diǎn),且AE,AD平分∠BACBCD.若PAD上的動(dòng)點(diǎn),則PC+PE的最小值等于( 。

A.B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,∠A90°,EAB上的一點(diǎn),且ADBE,∠1=∠2

1)求證:ADE≌△BEC;

2)若AD3,AB9,求ECD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖形中每一小格正方形的邊長(zhǎng)為1,已知△ABC

1AC的長(zhǎng)等于   .(結(jié)果保留根號(hào)

2)將△ABC向右平移2個(gè)單位得到△A′B′C′,A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是   ;

3)畫出將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C1,并寫出A點(diǎn)對(duì)應(yīng)點(diǎn)A1的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是(  。

A. 36° B. 54° C. 72° D. 30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個(gè)根為﹣,其中正確的結(jié)論個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論中,正確的結(jié)論的個(gè)數(shù)( )

;;

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案