精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點A(﹣1,0)、B(3,0)、點C三點.

(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設平移的時間為t秒,試求S與t之間的函數關系式?

【答案】
(1)

解:將A(﹣1,0)、B(3,0)代入拋物線y=ax2+bx+3(a≠0),

解得:a=﹣1,b=2.

故拋物線解析式為:y=﹣x2+2x+3


(2)

解:存在

將點D代入拋物線解析式得:m=3,

∴D(2,3),

令x=0,y=3,

∴C(0,3),

∴OC=OB,

∴∠OCB=∠CBO=45°,

如下圖,設BP交y軸于點G,

∵CD∥x軸,

∴∠DCB=∠BCO=45°,

在△CDB和△CGB中:

∵∠

∴△CDB≌△CGB(ASA),

∴CG=CD=2,

∴OG=1,

∴點G(0,1),

設直線BP:y=kx+1,

代入點B(3,0),

∴k=﹣ ,

∴直線BP:y=﹣ x+1,

聯(lián)立直線BP和二次函數解析式:

,

解得: (舍),

∴P(﹣ ,


(3)

解:直線BC:y=﹣x+3,直線BD:y=﹣3x+9,

當0≤t≤2時,如下圖:

設直線C′B′:y=﹣(x﹣t)+3

聯(lián)立直線BD求得F( , ),

S=SBCD﹣SCCE﹣SCDF

= ×2×3﹣ ×t×t﹣ ×(2﹣t)(3﹣

整理得:S=﹣ t2+3t(0≤t≤2).

當2<t≤3時,如下圖:

H(t,﹣3t+9),I(t,﹣t+3)

S=SHIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)

整理得:S=t2﹣6t+9(2<t≤3)

綜上所述:S=


【解析】(1)將點A、B代入拋物線解析式,求出a、b值即可得到拋物線解析式;(2)根據已知求出點D的坐標,并且由線段OC、OB相等、CD∥x軸及等腰三角形性質證明△CDB≌△CGB,利用全等三角形性質求出點G的坐標,寫出直線BP解析式,聯(lián)立二次函數解析式,求出點P坐標;(3)分兩種情況,第一種情況重疊部分為四邊形,利用大三角形減去兩個小三角形求得解析式,第二種情況重疊部分為三角形,可利用三角形面積公式求得.
【考點精析】解答此題的關鍵在于理解二次函數的圖象的相關知識,掌握二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數的性質的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,每小正方形的邊長為個單位,每個小方格的頂點叫格點.

(1)畫出邊上的中線;

(2)畫出向右平移個單位后得到的;

(3)圖中的關系是 ;

(4)能使的格點(不同于點),共有 個,在圖中分別用、、表示出來.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數,下列說法錯誤的是(

A.函數有最小值
B.當﹣1<x<3時,y>0
C.當x<1時,y隨x的增大而減小
D.對稱軸是直線x=1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀思考

我們知道,在數軸上|a|表示數a所對應的點到原點的距離,這是絕對值的幾何意義,由此我們可進一步地來研究數軸上任意兩個點之間的距離,一般地,如果數軸上兩點A、B 對立的數用a,b表示,那么這兩個點之間的距離AB=|a﹣b|.也可以用兩點中右邊的點所表示數的減去左邊的點所表示的數來計算,例如:數軸上P,Q兩點表示的數分別是﹣1和2,那么P,Q兩點之間的距離就是 PQ=2﹣(﹣1)=3.

啟發(fā)應用

如圖,點A在數軸上對應的數為a,點B對應的數為b,且a、b滿足|a+3|+(b﹣2)2=0

(1)求線段AB的長;

(2)如圖,點C在數軸上對應的數為x,且x是方程2x+1=x﹣8的解,

①求線段BC的長;

②在數軸上是否存在點P使PA+PB=BC?若存在,直接寫出點P對應的數:若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】著名的瑞士數學家歐拉曾指出:可以表示為四個整數平方之和的甲、乙兩數相乘,其乘積仍然可以表示為四個整數平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數為不變心的數.實際上,上述結論可減弱為:可以表示為兩個整數平方之和的甲、乙兩數相乘,其乘積仍然可以表示為兩個整數平方之和.

【動手一試】

試將改成兩個整數平方之和的形式. ;

【閱讀思考】

在數學思想中,有種解題技巧稱之為無中生有.例如問題:將代數式改成兩個平方之差的形式.解:原式

【解決問題】

請你靈活運用利用上述思想來解決不變心的數問題:將代數式改成兩個整數平方之和的形式(其中a、b、c、d均為整數),并給出詳細的推導過程﹒

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題.

程大位,明代商人,珠算發(fā)明家被稱為珠算之父、卷尺之父.少年時,讀書極為廣博,對數學頗感興趣,60歲時完成其杰作《直指算法統(tǒng)宗》簡稱《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧大僧三個更無爭,小僧三人分一個大小和尚各幾丁?意思是100個和尚分100個饅頭,如果大和尚1人分3小和尚3人分1,正好分完.試問大、小和尚各多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,延長CB到點M,使BM=1,連接AM,過點B作BN⊥AM,垂足為N,O是對角線AC,BD的交點,連接ON,則ON的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知BD平分∠ABC. 請補全圖形后,依條件完成解答.

(1)在直線BC下方畫∠CBE,使∠CBE與∠ABC互補;

(2)在射線BE上任取一點F,過點F畫直線FGBDBC于點G;

(3)判斷∠BFG與∠BGF的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】Rt△ABC中,∠ACB=90°,BC=4,如圖1,點P從C出發(fā)向點B運動,點R是射線PB上一點,PR=3CP,過點R作QR⊥BC,且QR=aCP,連接PQ,當P點到達B點時停止運動.設CP=x,△ABC與△PQR重合部分的面積為S,S關于x的函數圖象如圖2所示(其中0<x≤ , <x≤m,m<x≤n時,函數的解析式不同).
(1)a的值為;
(2)求出S關于x的函數關系式,并寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案