【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn),且當(dāng)和時(shí)所對(duì)應(yīng)的函數(shù)值相等.一次函數(shù)與二次函數(shù)的圖象分別交于, 兩點(diǎn),點(diǎn)在第一象限.
()求二次函數(shù)的表達(dá)式.
()連接,求的長.
()連接, 是線段得中點(diǎn),將點(diǎn)繞點(diǎn)旋轉(zhuǎn)得到點(diǎn),連接, ,判斷四邊形的性狀,并證明你的結(jié)論.
【答案】(1);(2);(3)見解析
【解析】(1)根據(jù)當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等,可得(5,c),根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)聯(lián)立拋物線與直線,可得方程組,根據(jù)解方程組,可得B、C 的坐標(biāo)根據(jù)勾股定理,可得AB的長;
(3)根據(jù)線段中點(diǎn)的性質(zhì),可得M點(diǎn)的坐標(biāo),根據(jù)旋轉(zhuǎn)的性質(zhì),可得MN與BM的關(guān)系,根據(jù)平行四邊形的判定,可得答案.
解:()當(dāng)時(shí).即.
把 代入解析式.
,∴,
∴.
()∵,∴, .
∴, ,
∴.
()四邊形為矩形.
證:∵為中點(diǎn),∴.
又∵,∴四邊形為平行四邊形.
又∵,∴.
在中.
.
∴,
∴四邊形為矩形.
“點(diǎn)睛”本題考查了二次函數(shù)綜合題,利用函數(shù)值相等得出(5,c)是解題關(guān)鍵,又利用了待定系數(shù)法求函數(shù)解析式;利用解方程組得出交點(diǎn)坐標(biāo),又利用了勾股定理;利用了平行四邊形的判定;對(duì)角線互相平分的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,矩形OABC的長OA=, 寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點(diǎn)在拋物線y=x2+bx+c上,求b,c的值,并說明點(diǎn)C在此拋物線上;
(3)題(2)中的拋物線與矩形OABC邊CB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)M是x軸上的點(diǎn),N是y軸上的點(diǎn),以點(diǎn)E、M、D、N為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(jí)一班與二班的同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的成績(jī)統(tǒng)計(jì)情況如下表:
班級(jí) | 參加人數(shù) | 中位數(shù) | 平均數(shù) | 方差 |
一 | 49 | 84 | 80 | 186 |
二 | 49 | 85 | 80 | 161 |
某同學(xué)分析后得到如下結(jié)論:
①一班與二班學(xué)生平均成績(jī)相同;
②二班優(yōu)生人數(shù)多于一班(優(yōu)生線85分)
③一班學(xué)生的成績(jī)相對(duì)穩(wěn)定。其中正確的是( )
A. ①② B. ①③ C. ①②③ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某球形流感病毒的直徑約為0.000000085m,0.000000085用科學(xué)記數(shù)法表為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的兩條邊長分別是7和3.則下列四個(gè)數(shù)可作為第三條邊長的是( 。
A. 3 B. 4 C. 7 D. 7或3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由四個(gè)小正方形拼接成的L形圖案,按下列 要求畫出圖形。
(1)請(qǐng)你用兩種方法分別在L形圖案中添畫一個(gè)小正方形,使它成為軸對(duì)稱圖形;
(2)請(qǐng)你在L形圖案中添畫一個(gè)小正方形,使它成為中心對(duì)稱圖形。
(3)請(qǐng)你在L}形圖案中移動(dòng)一個(gè)小正方形,使它成為既是中心對(duì)稱圖形,又是軸對(duì)稱圖形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標(biāo)系中的圖像可能是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,下面四個(gè)結(jié)論正確的有________________.
①BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(滿分8分)我市重慶路水果市場(chǎng)某水果店購進(jìn)甲、乙兩種水果.已知1千克甲種水果的進(jìn)價(jià)比1千克乙種水果的進(jìn)價(jià)多4元,購進(jìn)2千克甲種水果與1千克乙種水果共需20元.
(1)求甲種水果的進(jìn)價(jià)為每千克多少元?
(2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),甲種水果每天銷售量y(千克)與售價(jià)m(元/千克)之間滿足如圖所示的函數(shù)關(guān)系,求y與m之間的函數(shù)關(guān)系;
(3)在(2)的條件下,當(dāng)甲種水果的售價(jià)定為多少元時(shí),才能使每天銷售甲種水果的利潤最大?最大利潤是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com