【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關系式;
(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.
【答案】 (1) y1=﹣200x+2000。
(2) s=﹣150x+4800。
(3)詳見解析
【解析】
(1)設小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關系式為y1=k1x+b,由待定系數(shù)法根據(jù)圖象就可以求出解析式。
(2)先根據(jù)函數(shù)圖象求出甲乙的速度,然后與追擊問題就可以求出小亮追上小明的時間,就可以求出小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關系式。
(3)先根據(jù)相遇問題建立方程就可以求出a值,10分鐘甲、乙走的路程就是相距的距離,14分鐘小明走的路程和小亮追到小明時的時間就可以補充完圖象。
解:(1)設小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關系式為y1=k1x+b,由圖象,得:
,解得:。
∴y1=﹣200x+2000。
(2)由題意,得小明的速度為:2000÷40=50米/分,小亮的速度為:2000÷10=200米/分,
∴小亮從甲地追上小明的時間為24×50÷(200﹣50)=8分鐘,
∴24分鐘時兩人的距離為:s=24×50=1200;32分鐘時S=0。
設s與x之間的函數(shù)關系式為:s=kx+b1,由題意,得
,解得:。
∴s=﹣150x+4800。
(3)由題意,得a=2000÷(200+50)=8分鐘,
當x=24時,s=1200;當x=32時,S=0。
故描出相應的點就可以補全圖象如圖:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在△ABC的邊AB上,過點B,C,E的⊙O切AC于點C.直徑CD交BE于點F,連結BD,DE.已知∠A=∠CDE,AC=2,BD=1.
(1)求⊙O的直徑.
(2)過點F作FG⊥CD交BC于點G,求FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E、F分別為邊AB、CD的中點,BD是平行四邊形ABCD的對角線,AG∥BD交CB的延長線于點G
(1)求證:四邊形BEDF是平行四邊形;
(2)若AE=DE,則四邊形AGBD是什么特殊四邊形?請證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l:y=ax+b與雙曲線交于點A(1,m)和B(﹣2,﹣1).點A關于x軸的對稱點為點C.
(1)①求k的值和點C的坐標;②求直線l的表達式;
(2)過點B作y軸的垂線與直線AC交于點D,經(jīng)過點C的直線與直線BD交于點E.若30°≤∠CED≤45°,直接寫出點E的橫坐標t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中裝有1個藍球和2個紅球,這些球除顏色外都相同.
(1)攪勻后從中任意摸出1個球,摸到藍球的概率為 ;
(2)攪勻后從中任意摸出1個球,記錄顏色后放回、攪勻,再從中任意摸出1個球,求至少有1次摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A,B兩個觀測站,A在B的正東方向,有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.
(1)求A、B兩觀測站之間的距離;
(2)小船從點P處沿射線AP的方向前行,求觀測站B與小船的最短距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與
OD的延長線交于點P,PC、AB的延長線交于點F.
(1)求證:PC是⊙O的切線;
(2)若∠ABC=60°,AB=10,求線段CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=5,BC=8,點P在AB上,AP=1.將矩形ABCD沿CP折疊,點B落在點B'處.B'P、B′C分別與AD交于點E、F,則EF=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):
①以點A為圓心,BC邊的長為半徑作⊙A;
②以點B為頂點,在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com