【題目】如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與
OD的延長線交于點P,PC、AB的延長線交于點F.
(1)求證:PC是⊙O的切線;
(2)若∠ABC=60°,AB=10,求線段CF的長.
【答案】(1)證明見解析(2)5
【解析】
(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應(yīng)角相等,以及切線的性質(zhì)定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;
(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結(jié)合半徑OC=5可得答案.
(1)連接OC.
∵OD⊥AC,OD經(jīng)過圓心O,∴AD=CD,∴PA=PC.
在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.
∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.
(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.
∵AB=10,∴OC=5.
由(1)知∠OCF=90°,∴CF=OCtan∠COB=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明調(diào)查了班級里20位同學(xué)本學(xué)期購買課外書的花費情況,并將結(jié)果繪制成了如圖的統(tǒng)計圖.在這20位同學(xué)中,本學(xué)期購買課外書的花費的眾數(shù)和中位數(shù)分別是( )
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△OA1B1,頂點A1在雙曲線y=(x>0)上,點B1的坐標為(2,0).過B1作B1A2∥OA1交雙曲線于點A2,過A2作A2B2∥A1B1交x軸于點B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點A3,過A3作A3B3∥A2B2交x軸于點B3,得到第三個等邊△B2A3B3;以此類推,…,則點B6的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是弦,AB⊥CD,垂足為E,點P在⊙O上,連接BP、PD、BC.若CD=,sinP=,則⊙O的直徑為( 。
A. 8 B. 6 C. 5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標有數(shù)字0,1,2,乙袋中的小球上分別標有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,把球上的數(shù)字記為x,再從乙袋中任意摸出一個小球,把球上的數(shù)字記為y,以此確定點M的坐標(x,y).
(1)請你用畫樹狀圖或列表的方法(只選其中一種),寫出點M所有可能的坐標;
(2)求點M(x,y)在函數(shù)y=﹣2x的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某報紙公布的我國“九五”期間國內(nèi)生產(chǎn)總值的統(tǒng)計圖.那么“九五”期間我國國內(nèi)生產(chǎn)總值平均每年比上一年增長( )
A. 0.575萬億元 B. 0.46萬億元 C. 9.725萬億元 D. 7.78萬億元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】最短路徑問題:
例:如圖所示,要在街道旁修建一個奶站,向居民區(qū)A、B提供牛奶,奶站應(yīng)建在什么地方,才能使從A、B到它的距離之和最短.
解:只有A、C、B在一直線上時,才能使AC+BC最小.作點A關(guān)于直線“街道”的對稱點A′,然后連接A′B,交“街道”于點C,則點C就是所求的點.
應(yīng)用:已知:如圖A是銳角∠MON內(nèi)部任意一點,
在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.
(1)借助直角三角板在下圖中找出符合條件的點B和C.
(2)若∠MON=30°,OA=10,求三角形的最小周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對“你最認可的四大新生事物”進行調(diào)查,隨機調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中信息求出m= ,n= ;
(2)請你幫助他們將這兩個統(tǒng)計圖補全;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生中,大約有多少人最認可“微信”這一新生事物?
(4)已知A、B兩位同學(xué)都最認可“微信”,C同學(xué)最認可“支付寶”D同學(xué)最認可“網(wǎng)購”從這四名同學(xué)中抽取兩名同學(xué),請你通過樹狀圖或表格,求出這兩位同學(xué)最認可的新生事物不一樣的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某中學(xué)利用“陽光大課間”,組織學(xué)生積極參加豐富多彩的課外活動,學(xué)校成立了舞蹈隊、足球隊、籃球隊、毽子隊、射擊隊等,其中射擊隊在某次訓(xùn)練中,甲、乙兩名隊員各射擊10發(fā)子彈,成績用如圖的折線統(tǒng)計圖表示:(甲為實線,乙為虛線)
(1)依據(jù)折線統(tǒng)計圖,得到下面的表格:
射擊次序(次) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲的成績(環(huán)) | 8 | 9 | 7 | 9 | 8 | 6 | 7 | a | 10 | 8 |
乙的成績(環(huán)) | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | b | 10 |
其中a= ,b= ;
(2)甲成績的眾數(shù)是 ,乙成績的中位數(shù)是 環(huán);
(3)請運用方差的知識,判斷甲、乙兩人誰的成績更為穩(wěn)定?
(4)該校射擊隊要參加市組織的射擊比賽,已預(yù)選出2名男同學(xué)和2名女同學(xué),現(xiàn)要從這4名同學(xué)中任意選取2名同學(xué)參加比賽,請用列表或畫樹狀圖法,求出恰好選到1男1女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com