【題目】如圖,有一塊長(3a+b)米,寬(2a+b)米的長方形廣場,園林部門要對陰影區(qū)域進行綠化,空白區(qū)域進行廣場硬化,其中,四個角部分是半徑為(a﹣b)米的四個大小相同的扇形,中間部分是邊長為(a+b)米的正方形.

(1)用含a、b的式子表示需要硬化部分的面積;

(2)若a=30,b=10,求出硬化部分的面積(結(jié)果保留π的形式).

【答案】(1)需要硬化部分的面積為(3a+b)(2a+b)﹣(a+b)2﹣π(a﹣b)2;(2)當a=30,b=10,硬化部分的面積為(5400﹣400π)平方米.

【解析】

(1)用長方形的面積分別減去正方形的面積和四個扇形的面積可得到需要硬化部分的面積;

(2)把ab的值代入(1)中的代數(shù)式中計算即可

1)需要硬化部分的面積=(3a+b)(2a+b)﹣(a+b2πab2;

(2)當a=30,b=10,硬化部分的面積=(90+10)×(60+10)﹣402π×202

=(5400﹣400π)平方米

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,已知線段AB,點C分線段AB57,點D分線段AB511,若AB=96cm,求線段CD的長。

(2)如圖2,已知線段AB上有C、D兩點,AC=BC,AD=BD,CD=14cm,求線段AB的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC,∠C=90°,∠A=30°,BDABC的平分線,AD=20,BC的長是  (  )

A. 20 B. 20 C. 30 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】火車站、機場、郵局等場所都有為旅客提供打包服務的項目.現(xiàn)有一個長、寬、高分別為a、b 、30的箱子(其中a>b),準備采用如圖①、②的兩種打包方式,所用打包帶的總長(不計接頭處的長)分別記為

(1)圖①中打包帶的總長=________.

圖②中打包帶的總長=________.

(2)試判斷哪一種打包方式更節(jié)省材料,并說明理由.(提醒:先判斷再說理,說理過程即為比較 的大。

(3)b=40a為正整數(shù),在數(shù)軸上表示數(shù)的兩點之間有且只有19個整數(shù)點,求a 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直線l上有A、B、C三個點,已知BC=3AB,點D是AC中點,且BD=6cm,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)計算:|﹣2|+2cos60°﹣( 0;
(2)解不等式: ﹣x>1,并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下所示兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息,解答下列問題:

(1)本次調(diào)研活動共調(diào)研了多少名學生,表示“QQ”的扇形圓心角的度數(shù)是多少

(2)請你補充完整條形統(tǒng)計圖;

(3)如果該校有2000名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由一些棱長都為1的小正方體組合成的簡單幾何體.

(1)請畫出這個幾何體的三視圖并用陰影表示出來;

(2)該幾何體的表面積(含下底面)為   ;

(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的主視圖和俯視圖不變,那么最多可以再添加   個小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菲爾茲獎是國際上有崇高聲譽的一個數(shù)學獎項,下面的數(shù)據(jù)是從1936年至2014年菲爾茲獎得主獲獎時的年齡(歲): 29 39 35 33 39 27 33 35 31 31 37 32 38 36
31 39 32 38 37 34 29 34 38 32 35 36 33 32
29 35 36 37 39 38 40 38 37 39 38 34 33 40
36 36 37 40 31 38 38 40 40 37 35 40 39 37
請根據(jù)上述數(shù)據(jù),解答下列問題:
小彬按“組距為5”列出了如圖的頻數(shù)分布表

分組

頻數(shù)

A:25~30

B:30~35

15

C:35~40

31

D:40~45

合計

56


(1)每組數(shù)據(jù)含最小值不含最大值,請將表中空缺的部分補充完整,并補全頻數(shù)分布直方圖;
(2)根據(jù)(1)中的頻數(shù)分布直方圖描述這56位菲爾茲獎得主獲獎時的年齡的分布特征;
(3)在(1)的基礎(chǔ)上,小彬又畫了如圖所示的扇形統(tǒng)計圖,圖中獲獎年齡在30~35歲的人數(shù)約占獲獎總?cè)藬?shù)的%(百分號前保留1位小數(shù));C組所在扇形對應的圓心角度數(shù)約為°(保留整數(shù))

查看答案和解析>>

同步練習冊答案