精英家教網 > 初中數學 > 題目詳情

【題目】是等邊三角形,點是射線上的一個動點(點不與點重合),是以為邊的等邊三角形,過點的平行線,分別交射線于點,連接

(1)如圖(a)所示,當點在線段上時

①求證:;

②探究四邊形是怎樣特殊的四邊形?并說明理由;

(2)如圖(b)所示,當點的延長線上時,

(1)所求證和探究的兩個結論是否仍然成立?(直接寫出,不必說明理由)

當點運動到什么位置時,四邊形是菱形?并說明理由.

【答案】(1)①見解析,平行四邊形(2)成立,BC=CD

【解析】解:(1) ABCADE都是等邊三角形,

AE=AD,AB=AC,EAD=BAC=60°.

EAB=EAD-BAD,DAC=BAC-BAD

EAB=DAC,

AEB≌△ADC………………………………………………………(3分)

四邊形是平行四邊形. ………………………………………(6分)

(2)1)中的結論:

AEB≌△ADC, 四邊形是平行四邊形,均成立. ……………………(8分)

(3)當BC=CD時,四邊形BCFE是菱形.……………………………………………(9分)

理由: 由AEB≌△ADC,

BE=BC

BE=CD

BC=CD

得四邊形是平行四邊形,

四邊形是菱形. ……………………………………………(13分)

(1)證明:因EAB+BAD=BAD+DAC=60度,所以EAB=DAC,又EA=DA,BA=CA,故AEB≌△ADC。于是EBC=EBA+ABC=DCA+ABC=120度。那么EBC+BCG=120度+60度=180度,于是EB//GC,又EG//BC,故BCGE為一平行四邊形。 (2)BEGC仍為平行四邊形。與(1)類似,容易證明:ΔABE全等于ΔACD,那么ABE=ACD=120度,于是CBE=ACB=60度,進而BE//GC,又BC//EG,從而得證。(3)欲使其成為菱形,只須BE=BC,又BE=CD,故只須選取D點使BC=CD即可。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】ABC中,如果與∠B相鄰的外角等于140°,那么∠A+C=_______________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A坐標為(6,0),點B在y軸的正半軸上,且=240.

(1)求點B坐標;

(2)若點P從B出發(fā)沿y軸負半軸方向運動,速度每秒2個單位,運動時間t秒,△AOP的面積為S,求S與t的關系式,并直接寫出t的取值范圍;

(3)在(2)的條件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在線段AB的垂直平分線上是否存在點Q,使得△AOQ的面積與△BPQ的面積相等?若存在,求出Q點坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題是真命題的是( 。

A.在同一平面內,兩條直線的位置只有平行和垂直兩種

B.兩直線平行,同旁內角相等

C.過一點有且只有一條直線與已知直線平行

D.平行于同一條直線的兩直線平行

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ADBC于點D,EGBC于點G,E=3,AD BAC的平分線嗎?若是說明理由.(在下面的括號內填注依據)

解:是,理由如下:

ADBC,EGBC ( 已知 ),

∴∠4=5=90垂直的定義),

AD‖_____( );

∴∠1=E ( )

2=______(兩直線平行,內錯角相等);

∵∠E=3(已知),

∴∠_____=____(等量代換);

AD平分∠BAC( ).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學在助殘日舉行了一次手拉手、獻愛心的捐款活動,學校對已捐款學生人數及捐款金額情況進行了調查.圖①表示的是各年級捐款人數占總捐款人數的百分比;圖②是學校對學生的捐款金額情況進行抽樣調查并根據所得數據繪制的統(tǒng)計圖

1)學校對多少名學生的捐款金額情況進行了抽樣調查?

2)這組捐款金額數據的平均數、中位數各是多少?

3)若該校九年級共有400名學生捐款,估計全校學生捐款總金額大約多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】根據下表回答問題:

x

16

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

x2

256

259.21

262.44

265.69

268.96

272.25

175.56

278.89

282.24

(1)272.25的平方根是      

(2) =      , =      , =      

(3)設 的整數部分為a,求﹣4a的立方根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】推理填空:

如圖所示,已知∠1 = ∠2,∠B = ∠C,可推得ABCD

理由如下:

∵∠1 = ∠2(已知),且∠1 = ∠4_____________________,

∴∠2 = ∠4(等量代換).

CEBF__________________________.

∴∠_____= ∠3________________________

又∵∠B = ∠C(已知),

∴∠3= ∠B(等量代換),

ABCD_____________________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A、B兩點同時從原點O出發(fā),點A以每秒x個單位長度沿x軸的負方向運動,點B以每秒y個單位長度沿y軸的正方向運動.

(1)若|x+2y﹣5|+|2x﹣y|=0,試分別求出1秒鐘后A、B兩點的坐標;

(2)設∠BAO的外角和∠ABO的外角的平分線相交于點P,問:點A、B在運動的過程中,∠P的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理.

查看答案和解析>>

同步練習冊答案