【題目】如圖,AB∥CD,且∠1=20°,∠2=45°+α,∠3=60°-α,∠4=40°-α,∠5=30°.則α的值為( )

A. 10° B. 15° C. 20° D. 25°

【答案】D

【解析】延長GFABQ,延長FGCDN,如圖所示:


則∠NGH=180°-∠3,∠NMH=180°-∠5,
∵AB∥CD,
∴∠EQF=∠GNM,
∴∠2-∠1=360°-∠NGH-∠4-∠NMH,
∴∠2-∠1=360°-(180°-∠3)-∠4-(180°-∠5),
即∠2-∠1=∠3+∠5-∠4,
∵∠1=20°,∠2=45°+α,∠3=60°-α,∠4=40°-α,∠5=30°,
∴45°+a-20°=60°-a+30°-(40°-a),
解得:a=25°,
故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為迎接“均衡教育大檢查”,縣委縣府對通往某偏遠學校的一段全長為1200 米的道路進行了改造,鋪設草油路面.鋪設400 米后為了盡快完成道路改造,后來每天的工作效率比原計劃提高25%,結果共用13天完成道路改造任務

1求原計劃每天鋪設路面多少米;

2若承包商原來每天支付工人工資為1500提高工作效率后每天支付給工人的工資增長了20%,完成整個工程后承包商共支付工人工資多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019101日在天安門廣場舉行的國慶慶;顒又,參加人數(shù)約為150000人,用科學記數(shù)法表示這個人數(shù)是_____人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC中,∠ABC與∠ACB的平分線交于點I.根據(jù)下列條件,求∠BIC的

度數(shù)。

(1)若∠ABC=60°,∠ACB=70°,則∠BIC=

(2)若∠ABC+∠ACB=130°,則∠BIC=

(3)若∠A=50°,則∠BIC=

(4)若∠A=110°,則∠BIC=

(5)從上述計算中,我們能發(fā)現(xiàn)已知∠A,求∠BIC的公式是:∠BIC= .

(6)如圖②,BP,CP分別是∠ABC與∠ACB的外角平分線,交于點P.

若已知∠A,則求∠BPC的公式是:∠BPC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D、F、EG都在ABC的邊上,EFAD,1=2BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)

解:∵EFAD,(已知)

∴∠2=      

∵∠1=2,(已知)

∴∠1=      

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內(nèi)角互補)

   ,(已知)

∴∠AGD=   (等式性質(zhì))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點B、CE三點在同一條直線上,CD平分∠ACE,DBM=DAN,DMBEM,DNACN.1)求證:BDM≌△ADN ;(2)若AC=2,BC=1,求CM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線,直線與直線、分別相交于C、D兩點.

(1)如圖a,有一動點P在線段CD之間運動(不與C、D兩點重合),問在點P的運動過程中,是否始終具有∠3+∠1=∠2這一關系,為什么?

(2)如圖b,當動點P線段CD之外運動(不與C、D兩點重合),問上述結論是否成立?若不成立,試寫出新的結論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在△ABC中,∠B是∠A3倍,∠C比∠A30°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列條件后仍不能使△ABD≌△CAE的條件是(  )

A. AD=AE B. AB=AC C. BD=AE D. AD=CE

查看答案和解析>>

同步練習冊答案