【題目】某農(nóng)戶承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價為8千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷量千克與銷售單價千克之間的函數(shù)關(guān)系如圖所示.

yx的函數(shù)關(guān)系式,并寫出x的取值范圍;

當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?

【答案】(1);(2)當蜜柚定價為19千克時,每天獲得的利潤最大,最大利潤是1210元.

【解析】

觀察函數(shù)圖象,找出點的坐標,利用待定系數(shù)法求出yx的函數(shù)關(guān)系式,再利用一次函數(shù)圖象上點的坐標特征求出x的取值范圍;

設(shè)每天獲得的利潤為w元,根據(jù)銷售利潤每千克的利潤銷售數(shù)量,即可得出wx的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題.

設(shè)yx的函數(shù)關(guān)系式為,

將點,代入,

得:,解得:,

,

時,,

解得:,

x的函數(shù)關(guān)系式為

設(shè)每天獲得的利潤為w元,

根據(jù)題意得:,

時,w取最大值,最大值為1210,

答:當蜜柚定價為19千克時,每天獲得的利潤最大,最大利潤是1210元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了開闊學(xué)生的視野,積極組織學(xué)生參加課外讀書活動.放飛夢想讀書小組協(xié)助老師隨機抽取本校的部分學(xué)生,調(diào)查他們最喜愛的圖書類別(圖書分為文學(xué)類、藝體類、科普類、其他等四類),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請你結(jié)合圖中的信息解答下列問題:

1)求被調(diào)查的學(xué)生人數(shù);

2)補全條形統(tǒng)計圖;

3)已知該校有1200名學(xué)生,估計全校最喜愛文學(xué)類圖書的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,,過點作直線,將繞點順時針旋轉(zhuǎn)得到(點的對應(yīng)點分別為,),射線,分別交直線于點,

1)如圖1,當重合時,求的度數(shù);

2)如圖2,設(shè)的交點為,當的中點時,求線段的長;

3)在旋轉(zhuǎn)過程中,當點分別在,的延長線上時,試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】恩陽區(qū)市民廣場有一棵高大的老黃角樹樹.小明為測量該樹的高度AD,在大樹前的平地上點C處測得大樹頂端A的仰角∠C31°,然后向前直走22米到達B處,又測得大樹頂端A的仰角∠ABD45°,已知C、B、D在同一直線上(如圖所示),求老樹的高度AD.(參考數(shù)據(jù):tan31°≈,sin31°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點為E,EFx軸于F點,Mm0)是x軸上一動點,N是線段EF上一點,若∠MNC90°,請指出實數(shù)m的變化范圍,并說明理由.

3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線ykx+2k0)與拋物線相交于點P、Q(點P在左邊),過點Px軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)ykx+b(k≠0)的圖象與反比例函數(shù)y (n≠0)的圖象交于第二、四象限內(nèi)的AB兩點,與x軸交于點C,點B 坐標為(m,﹣1),ADx軸,且AD3tanAOD

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)Ex軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,AC平分DAB交O于點C,過點C的直線垂直于AD交AB的延長線于點P,弦CE交AB于點F,連接BE.

(1)求證:PD是O的切線;

(2)若PC=PF,試證明CE平分∠ACB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).

(1)求該拋物線所對應(yīng)的函數(shù)解析式;

(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.

①求四邊形ACFD的面積;

②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1 是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖 2 所示,盒子上方是一段圓。ɑ MN .D,E 為手提帶的固定點, DE 與弧MN 所在的圓相切,DE=2.手提帶自然下垂時,最低點為C,且呈拋物線形,拋物線與弧MN 交于點 FG.CDE 是等腰直角三角形,且點 CF 到盒子底部 AB 的距離分別為 1, ,則弧MN 所在的圓的半徑為_____

查看答案和解析>>

同步練習(xí)冊答案