【題目】如圖,AB是⊙O的直徑,AC平分∠DAB交⊙O于點C,過點C的直線垂直于AD交AB的延長線于點P,弦CE交AB于點F,連接BE.
(1)求證:PD是⊙O的切線;
(2)若PC=PF,試證明CE平分∠ACB.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)連接OC,如圖,先證明∠2=∠3得到OC∥AD,然后利用平行線的性質(zhì)得到OC⊥CD,從而根據(jù)切線的判定定理得到PD是⊙O的切線;
(2)先證明∠1=∠PCB,再根據(jù)等腰三角形的性質(zhì)得∠PCF=∠PFC,然后利用∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,從而可判斷∠BCF=∠ACF.
證明:(1)連接OC,如圖,
∵AC平分∠DAB,
∴∠1=∠2,
∵OA=OC,
∴∠1=∠3,
∴∠2=∠3,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∴PD是⊙O的切線;
(2)∵OC⊥PC,
∴∠PCB+∠BCO=90°,
∵AB為直徑,
∴∠ACB=90°,即∠3+∠BCO,
∴∠3=∠PCB,
而∠1=∠3,
∴∠1=∠PCB,
∵PC=PF,
∴∠PCF=∠PFC,
而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,
∴∠BCF=∠ACF,
即CE平分∠ACB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.則PD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架長2.5米的梯子AB斜靠在豎直的墻AC上,這時B到墻AC的距離為0.7米.
(1)若梯子的頂端A沿墻AC下滑0.9米至A1處,求點B向外移動的距離BB1的長;
(2)若梯子從頂端A處沿墻AC下滑的距離是點B向外移動的距離的一半,試求梯子沿墻AC下滑的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=為反比例函數(shù).
(1)求k的值;
(2)它的圖象在第 象限內(nèi),在各象限內(nèi),y隨x增大而 ;(填變化情況)
(3)求出﹣2≤x≤﹣時,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知a=3,b和c是關(guān)于x的方程x2+mx+2-m=0的兩個實數(shù)根.
(1)求△ABC的周長.
(2)求△ABC的三邊均為整數(shù)時的外接圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,點P在弧AB上(不含點A、B),把△AOP沿OP對折,點A的對應(yīng)點C恰好落在⊙O上.
(1)當P、C都在AB上方時(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);
(2)當P在AB上方而C在AB下方時(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;
(3)當P、C都在AB上方時(如圖3),過C點作CD⊥直線AP于D,且CD是⊙O的切線,證明:AB=4PD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1與x軸交于A(x1 , 0)、B(x2 , 0)兩點,且x1<0,x2>0,與y軸交于點C,頂點為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個實根,則x1+x2=﹣ ,x1x2= )
(1)求m的取值范圍;
(2)若OA=3OB,求拋物線的解析式;
(3)在(2)中拋物線的對稱軸PD上,存在點Q使得△BQC的周長最短,試求出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點,過點B作BE∥AD,交⊙O于點E,連接ED.
(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發(fā),以1cm/s的速度向點A、C運動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設(shè)運動的時間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當t為何值時,四邊形EHFG為菱形;
(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com