【題目】如圖,以等邊的一邊為直徑的半圓交于點(diǎn),交于點(diǎn),若,則陰影部分的面積是( 。
A.B.C.D.
【答案】C
【解析】
連接OE,OD,DE,易得OAD,OBE,ODE都是等邊三角形,且OADOBEODE,從而得弓形BE的面積=弓形DE的面積,進(jìn)而得陰影部分的面積=CDE的面積,進(jìn)而即可求解.
連接OE,OD,DE,
∵是等邊三角形,
∴AB=BC=AC=4,∠A=∠B=∠C=60°,
∵OA=OB=OD=OE,
∴OAD,OBE,ODE都是等邊三角形,且OADOBEODE,
∴BE=DE,
∴弓形BE的面積=弓形DE的面積,
∴陰影部分的面積=CDE的面積,
∵CE=BC-BE=AC-AD=CD=4-2=2,
∴CDE是等邊三角形,邊長(zhǎng)為2,
∴過(guò)點(diǎn)C作CM⊥DE于點(diǎn)M,則DM=1,CM=DM=,
∴CDE的面積=DE×CM=,
∴陰影部分的面積=.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)是邊上的一點(diǎn)(不與、重合),點(diǎn)在的延長(zhǎng)線上,且滿足,連接、,與邊交于點(diǎn).
(1)求證:;
(2)如果,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)B作BF∥CA交DA的延長(zhǎng)線于點(diǎn)F,AE,BF相交于點(diǎn)H.
(1)圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)
(2)證明:四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫出這個(gè)條件.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,=45°,點(diǎn)在軸上,點(diǎn)是的中點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)兩點(diǎn).
(1)求的值;
(2)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AB.C內(nèi)接于⊙0,點(diǎn)D在半徑OB的延長(zhǎng)線上,∠BCD=∠A=30°.
(1)判斷直線CD與⊙0的位置關(guān)系,并說(shuō)明理由
(2)若⊙0的半徑為1,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“迎元且大酬賓!”某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有個(gè)相同的小球,球上分別標(biāo)有“元”、“元”、“元”和“元”的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券.某顧客剛好消費(fèi)元,
(1)該顧客至多可得到 元購(gòu)物券;
(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與軸交于點(diǎn),與反比例函數(shù)的圖象的交點(diǎn)為,軸垂足為,若點(diǎn)在反比例函數(shù)圖象上,且的面積等于12,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com