【題目】如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點G,過點A作AE∥DB交CB的延長線于點E,過點B作BF∥CA交DA的延長線于點F,AE,BF相交于點H.
(1)圖中有若干對三角形是全等的,請你任選一對進行證明;(不添加任何輔助線)
(2)證明:四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)
【答案】(1)詳見解析;(2)詳見解析;(3)需要添加的條件是AB=BC.
【解析】試題分析:(1)可根據(jù)已知條件,或者圖形的對稱性合理選擇全等三角形,如△ABC≌△BAD,利用SAS可證明.
(2)由已知可得四邊形AHBG是平行四邊形,由(1)可知∠ABD=∠BAC,得到△GAB為等腰三角形,AHBG的兩鄰邊相等,從而得到平行四邊形AHBG是菱形.
試題解析:
(1)解:△ABC≌△BAD.
證明:∵AD=BC,
∠ABC=∠BAD=90°,
AB=BA,
∴△ABC≌△BAD(SAS).
(2)證明:∵AH∥GB,BH∥GA,
∴四邊形AHBG是平行四邊形.
∵△ABC≌△BAD,
∴∠ABD=∠BAC.
∴GA=GB.
∴平行四邊形AHBG是菱形.
(3)需要添加的條件是AB=BC.
科目:初中數(shù)學 來源: 題型:
【題目】(12分)某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
紅星中學根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實踐活動,設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
(2)若要保證租車費用不超過1900元,求x的最大值;
(3)在(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補)
∵ ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的直角坐標系中,解答下列問題:
(1)分別寫出A、B兩點的坐標;
(2)將△ABC向左平移3個單位長度,再向上平移5個單位長度,畫出平移后的△A1B1C1;
(3)求 △A1B1C1的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:每購買500元商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針上對準500、200、100、50、10的區(qū)域,顧客就可以獲得500元、200元、100元、50元、10元的購物券一張(轉(zhuǎn)盤等分成20份)。
(1)小華購物450元,他獲得購物券的概率是多少?
(2)小麗購物600元,那么:
① 她獲得50元購物券的概率是多少?
② 她獲得100元以上(包括100元)購物券的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖如下,則要說明∠D′O′C′=∠DOC,需要證明△D′O′C′≌△DOC,則這兩個三角形全等的依據(jù)是__(寫出全等的簡寫).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用6000元購進A,B兩種新式服裝,按標價售出后可獲得毛利潤3800元(毛利潤=售價-進價).這兩種服裝的進價,標價如表所示.
(1)求這兩種服裝各購進的件數(shù);
(2)如果A種服裝按標價的8折出售,B種服裝按標價的7折出售,那么這批服裝全部售完后,服裝店比按標價出售少收入多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,小林同學想把一張矩形的紙沿對角線BD對折,對折后C點與C′點重合,BC和AD相交于E,請你用尺規(guī)作圖的方法作出C′點,并保留作圖痕跡.
(2)如圖,已知在△ABC中,∠ABC=3∠C,AD是∠BAC的平分線,BE⊥AD于E,求證:BE=(AC-AB)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com