【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E作直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
【答案】(1)直線l與⊙O相切,理由詳見解析;(2)詳見解析;(3).
【解析】
(1)連接OE,由題意可證明,根據(jù)垂徑定理的推論可證明OE⊥BC,于是可證明OE⊥l,故可證明直線l與⊙O相切;
(2)先由角平分線的定義可知∠ABF=∠CBF,然后再證明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依據(jù)等角對等邊證明BE=EF即可;
(3)先求得BE的長,然后證明△BED∽△AEB,由相似三角形的性質(zhì)可求得AE的長,于是可得到AF的長.
解:(1)直線l與⊙O相切;
理由:如圖所示:連接OE,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴,
∴OE⊥BC,
∵l∥BC,
∴OE⊥l,
∴直線l與⊙O相切;
(2)∵BF平分∠ABC,
∴∠ABF=∠CBF,
又∵∠CBE=∠CAE=∠BAE,
∴∠CBE+∠CBF=∠BAE+∠ABF.
又∵∠EFB=∠BAE+∠ABF,
∴∠EBF=∠EFB,
∴BE=EF;
(3)由(2),得BE=EF=DE+DF=7,
∵∠DBE=∠BAE,∠DEB=∠BEA,
∴△BED∽△AEB,
∴,即,
解得AE=,
∴AF=AE-EF=-7=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在反比例函數(shù) 的圖象上,作,邊BC在x軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長交y軸于點(diǎn)E,若的面積為6,則k=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=4.0為BC邊上一點(diǎn),以0為圓心,OB為半徑作半圓與BC邊和AB邊分別交于點(diǎn)D、點(diǎn)E,連接DE.
(1)當(dāng)BD=3時(shí),求線段DE的長;
(2)過點(diǎn)E作半圓O的切線,當(dāng)切線與AC邊相交時(shí),設(shè)交點(diǎn)為F.求證:△FAE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2kx﹣k2+k+3(k為常數(shù))的頂點(diǎn)縱坐標(biāo)為4.
(1)求k的值;
(2)設(shè)拋物線與直線y=﹣(x﹣3)(m≠0)兩交點(diǎn)的橫坐標(biāo)為x1,x2,n=x1+x2﹣2,若A(1,a),B(b,)兩點(diǎn)在動點(diǎn)M(m,n)所形成的曲線上,求直線AB的解析式;
(3)將(2)中的直線AB繞點(diǎn)(3,0)順時(shí)針旋轉(zhuǎn)45°,與拋物線x軸上方的部分相交于點(diǎn)C,請直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖③所示,圖象過點(diǎn)(-1,0),對稱軸為直線=2,則下列結(jié)論中正確的個(gè)數(shù)有( )
①4+b=0;②;③若點(diǎn)A(-3, ),點(diǎn)B(-, ),點(diǎn)C(5, )在該函數(shù)圖象上,則<<;④若方程的兩根為和,且<,則<-1<5<.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩地之間有條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達(dá),現(xiàn)在新建了橋EF,可直接沿直線AB從A地到達(dá)B地.已知BC=11km,∠A=45°,∠B=37°,橋DC和AB平行,橋DC與橋EF的長相等.
(1)求點(diǎn)D到直線AB的距離;
(2)現(xiàn)在從A地到B地可比原來少走多少路程?
(結(jié)果保留小數(shù)點(diǎn)后一位.參考數(shù)據(jù):≈1.41,sin37°≈0.60,cos37°≈0.80).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:D是BC的中點(diǎn);
(2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形中,、分別是邊、的中點(diǎn),分別交、于、.請判斷下列結(jié)論:;;;.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)與反比例函數(shù)的圖象相交于點(diǎn).
(1)填空:的值為_______________,的值為_____________;
(2)以點(diǎn)為圓心、為半徑畫弧交軸的正半軸于點(diǎn),以為鄰邊作平行四邊形,求點(diǎn)的坐標(biāo);
(3)觀察上述反比例函數(shù)的圖象,當(dāng)時(shí),請直接寫出自變量的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com