【題目】如圖,已知點(diǎn)A在反比例函數(shù) 的圖象上,作,邊BCx軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長交y軸于點(diǎn)E,若的面積為6,則k=___

【答案】12

【解析】

先根據(jù)題意證明BOE∽△CBA,根據(jù)相似比及面積公式得出BO×AB的值即為|k|的值,再由函數(shù)所在的象限確定k的值.

BDRtABC的斜邊AC上的中線,

BD=DC,∠DBC=ACB,

又∠DBC=EBO,

∴∠EBO=ACB

又∠BOE=CBA=90°,

∴△BOE∽△CBA,

,即BC×OE=BO×AB

又∵SBEC=6,

BCEO=6,

BC×OE=12=BO×AB=|k|

∵反比例函數(shù)圖象在第一象限,k0

k=12

故答案是:12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點(diǎn)A、C的坐標(biāo);

(2)將ABC對折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖);

(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角標(biāo)系中,已知ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,2),B(3,4),C(1,6)

1)畫出△ABC,并求出BC所在直線的解析式;

2)畫出△ABC繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB90°,∠B30°,以點(diǎn)O為圓心,OA為半徑作弧交AB于點(diǎn)A、點(diǎn)C,交OB于點(diǎn)D,若OA3,則陰影都分的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點(diǎn),請?jiān)趫A上找出滿足條件的點(diǎn),使智慧三角形(畫出點(diǎn)的位置,保留作圖痕跡);

如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說明理由;

運(yùn)用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點(diǎn)是直線上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時,直接寫出此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB10cmE為對角線BD上一動點(diǎn),連接AECE,過E點(diǎn)作EFAE,交直線BC于點(diǎn)FE點(diǎn)從B點(diǎn)出發(fā),沿著BD方向以每秒2cm的速度運(yùn)動,當(dāng)點(diǎn)E與點(diǎn)D重合時,運(yùn)動停止.設(shè)△BEF的面積為ycm2E點(diǎn)的運(yùn)動時間為x秒.

1)求證:CEEF;

2)求yx之間關(guān)系的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;

3)求△BEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,于點(diǎn),,為了研究圖中線段之間的關(guān)系,設(shè),

1)可通過證明,得到關(guān)于的函數(shù)表達(dá)式__________,其中自變量的取值范圍是___________;

2)根據(jù)圖中給出的(1)中函數(shù)圖象上的點(diǎn),畫出該函數(shù)的圖象;

3)借助函數(shù)圖象,回答下列問題:①的最小值是__________;②已知當(dāng)時,的形狀與大小唯一確定,借助函數(shù)圖象給出的一個估計值(精確到0.1)或者借助計算給出的精確值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為美化小區(qū)環(huán)境,物業(yè)計劃安排甲、乙兩個工程隊(duì)完成小區(qū)綠化工作.已知甲工程隊(duì)每天綠化面積是乙工程隊(duì)每天綠化面積的2倍,甲工程隊(duì)單獨(dú)完成600m2的綠化面積比乙工程隊(duì)單獨(dú)完成600m2的綠化面積少用2天.

1)求甲、乙兩工程隊(duì)每天綠化的面積分別是多少m2;

2)小區(qū)需要綠化的面積為9600m2,物業(yè)需付給甲工程隊(duì)每天綠化費(fèi)為0.3萬元,付給乙工程隊(duì)每天綠化費(fèi)為 0.2萬元,若要使這次的綠化總費(fèi)用不超過10萬元,則至少應(yīng)安排甲工程隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E作直線lBC

(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;

(2)若∠ABC的平分線BFAD于點(diǎn)F,求證:BEEF;

(3)(2)的條件下,若DE4,DF3,求AF的長.

查看答案和解析>>

同步練習(xí)冊答案