【題目】如圖:在數(shù)軸上點表示數(shù),點表示數(shù)6,
(1)A、B兩點之間的距離等于_________;
(2)在數(shù)軸上有一個動點,它表示的數(shù)是,則的最小值是_________;
(3)若點與點之間的距離表示為,點與點之間的距離表示為,請在數(shù)軸上找一點,使,則點表示的數(shù)是_________;
(4)若在原點的左邊2個單位處放一擋板,一小球甲從點處以5個單位/秒的速度向右運動;同時另一小球乙從點處以2個單位/秒的速度向左運動,在碰到擋板后(忽略球的大小,可看作一點)兩球分別以原來的速度向相反的方向運動,設運動時間為秒,請用來表示甲、乙兩小球之間的距離.
【答案】(1)16 (2)16 (3)2或14 (4)甲、乙兩小球之間的距離為:或,或.
【解析】
(1)根據數(shù)軸上兩點之間的距離公式計算即可;
(2)先根據P點在數(shù)軸上的位置分類討論,然后求最小值即可;
(3)由題意可知:點C距離B點較近,設點C所表示的數(shù)為y,然后根據點C與點B的位置分類討論即可;
(4)根據題意:點A到表示﹣2的點的距離為:﹣2-(﹣10)=8,點B到表示﹣2的點的距離為:6-(﹣2)=8,甲球從A到﹣2所需時間為:8÷5=s,乙球從B到﹣2所需時間為:8÷2=4s,然后用t分別表示出甲球從點A到表示﹣2的點之前和之后,甲球所表示的數(shù),乙球從點B到表示﹣2的點之前和之后,乙球所表示的數(shù),根據數(shù)軸上兩點之間的距離公式,即可求出甲乙兩球的距離.
解:(1)
故答案為:16;
(2)根據數(shù)軸上兩點的距離公式可知:表示點P與點A之間的距離,表示點P與點B之間的距離
①若點P在A點左側時,即x<﹣10,由下圖可知:PB>AB=16,即
∴此時;
②若點P在線段AB上時,即﹣10≤x≤6,由下圖可知:PA+PB=AB=16,
∴此時;
③若點P在B點右側時,即x>6,由下圖可知:PA>AB=16,即
∴此時;
綜上所述:(當點P在線段AB上時,即﹣10≤x≤6,取等號)
∴的最小值是16;
故答案為:16.
(3)∵
∴點C距離B點較近
設點C所表示的數(shù)為y
①當C在B點左側時,如下圖所示,
∴AC=y-(﹣10)=y+10,BC=6-y
∵
∴y+10=3(6-y)
解得:y=2;
②當C在B點右側時,如下圖所示,
∴AC=y-(﹣10)=y+10,BC= y -6
∵
∴y+10=3(y -6)
解得:y=14.
綜上所述:點表示的數(shù)是2或14.
(4)點A到表示﹣2的點的距離為:﹣2-(﹣10)=8,點B到表示﹣2的點的距離為:6-(﹣2)=8,甲球從A到﹣2所需時間為:8÷5=s,乙球從B到﹣2所需時間為:8÷2=4s,
∴運動秒鐘后,甲球表示的數(shù)是:或;
乙球表示的數(shù)是:或,
∴或,或.
∴甲、乙兩小球之間的距離為:或,或.
科目:初中數(shù)學 來源: 題型:
【題目】有3張紙牌,分別是紅桃3、紅桃4和黑桃5(簡稱紅3,紅4,黑5).把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.
(1)兩次抽得紙牌均為紅桃的概率;(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
(2)甲、乙兩人做游戲,現(xiàn)有兩種方案.A方案:若兩次抽得花色相同則甲勝,否則乙勝.B方案:若兩次抽得紙牌的數(shù)字和為奇數(shù)則甲勝,否則乙勝.請問甲選擇哪種方案勝率更高?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設直線y=kx+6和直線y=(k+1)x+6(k是正整數(shù))及x軸圍成的三角形面積為Sk(k=1,2,3,…,8),則S1+S2+S3+…+S8的值是( 。
A. B. C. 16D. 14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形中,=60°, AB=2,點E是AB上的動點,作∠EDQ=60°交BC于點Q,點P在AD上,PD=PE.
(1)求證:AE=BQ;
(2)連接PQ, EQ,當∠PEQ=90°時,求的值;
(3)當AE為何值時,△PEQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠一周計劃生產150輛自行車,平均每天生產輛,由于各種原因實際每天生產量與計劃量相比有出入,下表是某周的生產情況(超產為正、減產為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據記錄可知前三天共生產 輛;
(2)產量最多的一天比生產量最少的一天多生產 輛;
(3)該廠實行計劃工資制,每輛車元,超額完成任務每輛獎元,少生產一輛扣元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b(k、b為常數(shù))分別與x軸、y軸交于點A(﹣4,0)、B(0,3),拋物線y=﹣x2+2x+1與y軸交于點C,點E在拋物線y=﹣x2+2x+1的對稱軸上移動,點F在直線AB上移動,CE+EF的最小值是( 。
A. 1.4 B. 2.5 C. 2.8 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上任意兩點之間的距離均可用“右﹣左”表示,即右邊的數(shù)(較大)減去左邊的數(shù)(較。阎獢(shù)軸上兩點A、B對應的數(shù)分別為﹣2、5,則A、B兩點之間的距離記為AB,且AB=5﹣(﹣2)=7.P為數(shù)軸上的動點,其對應的數(shù)為x.
(1)若點P到A,B兩點的距離相等,寫出點P對應的數(shù);
(2)數(shù)軸上是否存在點P,使點P到A,B兩點的距離之和為11,若存在,請求出x的值;若不存在,請說明理由;
(3)若點P在原點,現(xiàn)在A,B,P三個點均向左勻速運動,其中點P的速度為每秒1個單位;A,B兩點中有一個點速度與點P的速度一致,另一個點以每秒3單位的速度運動;則幾秒后點P到A,B兩點的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC=CD=AD=4,∠DAB=∠B=∠C=∠D=90°,E,F分別是邊BC,CD上的點,且CE=BC,F為CD的中點,問△AEF是什么三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題:
(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)
(3)[45-(-+)×36]÷5 (4)99×(-36)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com