【題目】如圖,在△ABC中,AB=AC,CD是AB邊上的中線,延長AB至點E,使BE=AB,連接CE. 請你探究:
(1)當∠BAC為直角時,直接寫出線段CE與CD之間的數(shù)量關系;
(2)當∠BAC為銳角或鈍角時,(1)中的上述數(shù)量關系是否仍然成立?若成立,請給出證明;若不成立,請說明理由。
【答案】(1)CE=2CD;(2)仍然成立
【解析】試題分析:(1)如圖,延長CE到F,使EF=CE,連接FB.由CE是AB邊上的中線,∠BEF=∠AEC,可證得△AEC≌△BEF,進而得∠1=∠A,F(xiàn)B=BD,從而可得△CDB≌△CFB,即可得到結果;
(2)根據(jù)上面的方法,直接可畫圖證明即可.
試題解析:(1)CE=2CD;
延長CE到F,使EF=CE,連接FB,
∵CE是AB邊上的中線,
∴AE=BE,
又∵∠BEF=∠AEC,
∴△AEC≌△BEF,
∴FB=AC,∠1=∠A,
∵BD=AB,
∴FB=BD,
∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF,
又∵BC為公共邊,
∴△CDB≌△CFB,
∴CD=CF=2CE,
即2CE=CD
(2)仍然成立. 例如取AC中點M,連接BM. 證法較多,略。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AC=BC,分別以BC和AC為直角邊向上作等腰直角三角形△BCD和△ACE,AE與BD相交于點F,連接CF并延長交AB于點G.求證:CG垂直平分AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3s后,兩點相距18個單位長度.已知點B的速度是點A的速度的5倍(速度單位:單位長度/s).
(1)求出點A、點B運動的速度,并在數(shù)軸上標出A,B兩點從原點出發(fā)運動3s時的位置;
(2)若A,B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?
(3)當A,B兩點從(2)中的位置繼續(xù)以原來的速度沿數(shù)軸向左運動的同時,另一點C從原點位置也向點A運動,當遇到點A后,立即返回向點B運動,遇到點B后又立即返回向點A運動,如此往返,直到點B追上點A時,點C立即停止運動.若點C一直以8個單位長度/s的速度勻速運動,則點C從開始運動到停止運動,行駛的路程是多少個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點D,連接AD,以下結論:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正確的是 . (填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,OB是∠AOC的平分線,OD是∠COE的平分線.
(1)若∠AOB=50°,∠DOE=35°,求∠BOD的度數(shù);
(2)若∠AOE=160°,∠COD=40°,求∠AOB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com