已知拋物線(xiàn) a≠0)的對(duì)稱(chēng)軸是直線(xiàn)l,頂點(diǎn)為點(diǎn)M.若自變量x和函數(shù)值y1的部分對(duì)應(yīng)值如下表所示:

x

―1
0
3



0

0

(1)求y1與x之間的函數(shù)關(guān)系式;
(2)若經(jīng)過(guò)點(diǎn)T(0,t)作垂直于y軸的直線(xiàn)l′,A為直線(xiàn)l′上的動(dòng)點(diǎn),線(xiàn)段AM的垂直平分線(xiàn)交直線(xiàn)l于點(diǎn)B,點(diǎn)B關(guān)于直線(xiàn)AM的對(duì)稱(chēng)點(diǎn)為P,記P(x,y2).
①求y2與x之間的函數(shù)關(guān)系式;
②當(dāng)x取任意實(shí)數(shù)時(shí),若對(duì)于同一個(gè)x,有y1<y2恒成立,求t的取值范圍.

解:(1)∵拋物線(xiàn)經(jīng)過(guò)點(diǎn)(0,),∴c=!
∵點(diǎn)(-1,0)、(3,0)在拋物線(xiàn)上,
,解得
∴y1與x之間的函數(shù)關(guān)系式為:。
(2)∵,∴。
∴直線(xiàn)l為x=1,頂點(diǎn)M(1,3).
①由題意得,t≠3,
如圖,記直線(xiàn)l與直線(xiàn)l′交于點(diǎn)C(1,t),

當(dāng)點(diǎn)A′與點(diǎn)C不重合時(shí),
∵由已知得,AM與BP互相垂直平分,
∴四邊形ANMP為菱形!郟A∥l。
又∵點(diǎn)P(x,y2),∴點(diǎn)A(x,t)(x≠1)!
過(guò)點(diǎn)P作PQ⊥l于點(diǎn)Q,則點(diǎn)Q(1,y2),∴,
在Rt△PQM中,∵,即。
整理得,,即
當(dāng)點(diǎn)A與點(diǎn)C重合時(shí),點(diǎn)B與點(diǎn)P重合,
∴P(1,)。∴P點(diǎn)坐標(biāo)也滿(mǎn)足上式。
∴y2與x之間的函數(shù)關(guān)系式為(t≠3)。
②根據(jù)題意,借助函數(shù)圖象:
當(dāng)拋物線(xiàn)y2開(kāi)口方向向上時(shí),6-2t>0,即t<3時(shí),拋物線(xiàn)y1的頂點(diǎn)M(1,3),拋物線(xiàn)y2的頂點(diǎn)(1,),
∵3>,∴不合題意。
當(dāng)拋物線(xiàn)y2開(kāi)口方向向下時(shí),6-2t<0,即t>3時(shí),
,
若3t-11≠0,要使y1<y2恒成立,只要拋物線(xiàn)開(kāi)口方向向下,且頂點(diǎn)(1,)在x軸下方,
∵3-t<0,只要3t-11>0,解得t>,符合題意。
若3t-11=0,,即t=也符合題意。
綜上所述,可以使y1<y2恒成立的t的取值范圍是t≥。

解析試題分析:(1)先根據(jù)物線(xiàn)經(jīng)過(guò)點(diǎn)(0, )得出c的值,再把點(diǎn)(-1,0)、(3,0)代入拋物線(xiàn)y1的解析式即可得出y1與x之間的函數(shù)關(guān)系式。
(2)先根據(jù)(I)中y1與x之間的函數(shù)關(guān)系式得出頂點(diǎn)M的坐標(biāo).
①記直線(xiàn)l與直線(xiàn)l′交于點(diǎn)C(1,t),當(dāng)點(diǎn)A′與點(diǎn)C不重合時(shí),由已知得,AM與BP互相垂直平分,故可得出四邊形ANMP為菱形,所以PA∥l,再由點(diǎn)P(x,y2)可知點(diǎn)A(x,t)(x≠1),所以,過(guò)點(diǎn)P作PQ⊥l于點(diǎn)Q,則點(diǎn)Q(1,y2),故,,在Rt△PQM中,根據(jù)勾股定理即可得出y2與x之間的函數(shù)關(guān)系式,再由當(dāng)點(diǎn)A與點(diǎn)C重合時(shí),點(diǎn)B與點(diǎn)P重合可得出P點(diǎn)坐標(biāo),故可得出y2與x之間的函數(shù)關(guān)系式。
②據(jù)題意,借助函數(shù)圖象:
當(dāng)拋物線(xiàn)y2開(kāi)口方向向上時(shí),可知6-2t>0,即t<3時(shí),拋物線(xiàn)y1的頂點(diǎn)M(1,3),拋物線(xiàn)y2的頂點(diǎn)(1, ),由于3>,所以不合題意。
當(dāng)拋物線(xiàn)y2開(kāi)口方向向下時(shí),6-2t<0,即t>3時(shí),求出的值。若3t--11≠0,要使y1<y2恒成立,只要拋物線(xiàn)方向向下及且頂點(diǎn)(1, )在x軸下方,因?yàn)?-t<0,只要3t-11>0,解得t>,符合題意;若3t-11=0,,即t=也符合題意。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,4),頂點(diǎn)為(1,).

(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)如圖1,設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,試在對(duì)稱(chēng)軸上找出點(diǎn)P,使△CDP為等腰三角形,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的所有點(diǎn)P的坐標(biāo).
(3)如圖2,若點(diǎn)E是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),分別連接AC、BC,過(guò)點(diǎn)E作EF∥AC交線(xiàn)段BC于點(diǎn)F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時(shí)E點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

中秋節(jié)期間某水庫(kù)養(yǎng)殖場(chǎng)為適應(yīng)市場(chǎng)需求,連續(xù)用20天時(shí)間,采用每天降低水位以減少捕撈成本的辦法,對(duì)水庫(kù)中某種鮮魚(yú)進(jìn)行捕撈、銷(xiāo)售.
九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天()的捕撈與銷(xiāo)售的相關(guān)信息如下:

鮮魚(yú)銷(xiāo)售單價(jià)(元/kg)
20
單位捕撈成本(元/kg)

捕撈量(kg)
950-10x
(1)在此期間該養(yǎng)殖場(chǎng)每天的捕撈量與前一天的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場(chǎng)每天捕撈和銷(xiāo)售的鮮魚(yú)沒(méi)有損失,且能在當(dāng)天全部售出,求第x天的收入y(元)與x(元)之間的函數(shù)關(guān)系式;(當(dāng)天收入=日銷(xiāo)售額日捕撈成本)
(3)試說(shuō)明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿(mǎn)。當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑。賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用。根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元。設(shè)每個(gè)房間的房?jī)r(jià)每天增加x元(x為10的正整數(shù)倍)。
(1) 設(shè)一天訂住的房間數(shù)為y,直接寫(xiě)出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2) 設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式;
(3) 一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)(b,c是常數(shù),且c<0)與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).

(1)b=    ,點(diǎn)B的橫坐標(biāo)為    (上述結(jié)果均用含c的代數(shù)式表示);
(2)連接BC,過(guò)點(diǎn)A作直線(xiàn)AE∥BC,與拋物線(xiàn)交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),其坐標(biāo)為
(2,0),當(dāng)C,D,E三點(diǎn)在同一直線(xiàn)上時(shí),求拋物線(xiàn)的解析式;
(3)在(2)的條件下,點(diǎn)P是x軸下方的拋物線(xiàn)上的一動(dòng)點(diǎn),連接PB,PC,設(shè)所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有    個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線(xiàn)(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線(xiàn)于點(diǎn)G.

(1)求拋物線(xiàn)的解析式;
(2)拋物線(xiàn)的對(duì)稱(chēng)軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線(xiàn)于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線(xiàn)部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)拋物線(xiàn)(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線(xiàn)與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類(lèi)推.
(1)求a1,b1的值及拋物線(xiàn)y2的解析式;
(2)拋物線(xiàn)y3的頂點(diǎn)坐標(biāo)為(       ,       );
依此類(lèi)推第n條拋物線(xiàn)yn的頂點(diǎn)坐標(biāo)為(              );
所有拋物線(xiàn)的頂點(diǎn)坐標(biāo)滿(mǎn)足的函數(shù)關(guān)系是       ;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線(xiàn)被x軸截得得線(xiàn)段長(zhǎng),直接寫(xiě)出A0A1的值,并求出An-1An;
②是否存在經(jīng)過(guò)點(diǎn)A(2,0)的直線(xiàn)和所有拋物線(xiàn)都相交,且被每一條拋物線(xiàn)截得得線(xiàn)段的長(zhǎng)度都相等?若存在,直接寫(xiě)出直線(xiàn)的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件
(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種文具,每天所得的銷(xiāo)售利潤(rùn)(元)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案
方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在坐標(biāo)系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線(xiàn)的圖象過(guò)C點(diǎn).

(1)求拋物線(xiàn)的解析式;
(2)平移該拋物線(xiàn)的對(duì)稱(chēng)軸所在直線(xiàn)l.當(dāng)l移動(dòng)到何處時(shí),恰好將△ABC的面積分為相等的兩部分?
(3)點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案