【題目】如圖,已知矩形ABCD中,E是AD上的一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長(zhǎng)為32cm,求AE的長(zhǎng).
【答案】6.
【解析】試題分析:
由已知條件易證Rt△AEF≌Rt△DCE,從而可得AE=CD,AF=DE,結(jié)合矩形ABCD的周長(zhǎng)為32,DE=4可得AE+4+DC=16,即AE+4+AE=16,由此可解得AE=6.
試題解析:
在Rt△AEF和Rt△DEC中,EF⊥CE.
∴∠FEC=90°.
∴∠AEF+∠DEC=90°.
而∠ECD+∠DEC=90°.
∴∠AEF=∠ECD.
在Rt△AEF與Rt△DCE中,
∵ ,
∴Rt△AEF≌Rt△DCE(AAS).
∴AE=CD.
AD=AE+4.
∵矩形ABCD的周長(zhǎng)為32cm.
∴2(AE+ED+DC)=32,即2(2AE+4)=32,
整理得:2AE+4=16
解得:AE=6(cm).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OE平分∠AOD,OF平分∠BOD.
(1)若∠AOC=70°,求∠DOE和∠EOF的度數(shù);
(2)請(qǐng)寫(xiě)出圖中∠AOD的補(bǔ)角和∠AOE的余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】梅嶺中學(xué)為了解“課程選修”的情況,對(duì)報(bào)名參加“藝術(shù)欣賞”,“科技制作”,“數(shù)學(xué)思維”,“閱讀寫(xiě)作”這四個(gè)選修項(xiàng)目的學(xué)生(每人限報(bào)一課)進(jìn)行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計(jì)圖中“藝術(shù)欣賞”部分的圓心角是______度;
(2)請(qǐng)把這個(gè)條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)現(xiàn)該校共有800名學(xué)生報(bào)名參加這四個(gè)選修項(xiàng)目,請(qǐng)你估計(jì)其中有多少名學(xué)生選修 “科技制作”項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:線段CB=6,點(diǎn)A在線段BC上,且CA=2,以AB為直徑做半圓O,點(diǎn)D為半圓O上的動(dòng)點(diǎn),以CD為邊向外作等邊△CDE.
(1)發(fā)現(xiàn):CD的最小值是 , 最大值是 , △CBD面積的最大值是 .
(2)思考:如圖1,當(dāng)線段CD所在直線與半圓O相切時(shí),求弧BD的長(zhǎng).
(3)探究:如圖2,當(dāng)線段CD與半圓O有兩個(gè)公共點(diǎn)D,M時(shí),若CM=DM,求等邊△CDE面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,∠ADC的平分線交AB于點(diǎn)E,∠ABC的平分線交CD于點(diǎn)F,求證:四邊形EBFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知凸四邊形ABCD中,∠A=∠C=90°.
(1)如圖1,若DE平分∠ADC,BF平分∠ABC的鄰補(bǔ)角,判斷DE與BF位置關(guān)系并證明.
(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補(bǔ)角,判斷DE與BF位置關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),過(guò)A點(diǎn)作AG∥DB,交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:DE∥BF;
(2)若∠G=90,求證:四邊形DEBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀材料)“九宮圖”源于我國(guó)古代夏禹時(shí)期的“洛書(shū)”圖1所示,是世界上最早的矩陣,又稱(chēng)“幻方”,用今天的數(shù)學(xué)符號(hào)翻譯出來(lái),“洛書(shū)”就是一個(gè)三階“幻方”圖2所示.
(規(guī)律總結(jié))觀察圖1、圖2,根據(jù)“九宮圖”中各數(shù)字之間的關(guān)系,我們可以總結(jié)出“幻方”需要滿(mǎn)足的條件是______;若圖3,是一個(gè)“幻方”,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,制作某金屬工具先將材料煅燒6分鐘溫度升到800℃,再停止煅燒進(jìn)行鍛造,8分鐘溫度降為600℃;煅燒時(shí)溫度y(℃)與時(shí)間x(min)成一次函數(shù)關(guān)系;鍛造時(shí)溫度y(℃)與時(shí)間x(min)成反比例函數(shù)關(guān)系;該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時(shí)y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作,那么鍛造的操作時(shí)間有多長(zhǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com