【題目】梅嶺中學(xué)為了解“課程選修”的情況,對報(bào)名參加“藝術(shù)欣賞”,“科技制作”,“數(shù)學(xué)思維”,“閱讀寫作”這四個(gè)選修項(xiàng)目的學(xué)生(每人限報(bào)一課)進(jìn)行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計(jì)圖中“藝術(shù)欣賞”部分的圓心角是______度;
(2)請把這個(gè)條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)現(xiàn)該校共有800名學(xué)生報(bào)名參加這四個(gè)選修項(xiàng)目,請你估計(jì)其中有多少名學(xué)生選修 “科技制作”項(xiàng)目.
【答案】(1)200人;(2)144°;(3)120人.
【解析】試題分析: (1)根據(jù)總?cè)藬?shù)=所占人數(shù)÷百分?jǐn)?shù),圓心角=360°×百分比,分別計(jì)算即可;
(2)求出數(shù)學(xué)思維的人數(shù),畫出條形圖即可;
(3)用樣本估計(jì)總體的思想思考問題即可;
解:(1)總?cè)藬?shù)=50÷25%=200人,
藝術(shù)鑒賞”所對應(yīng)的圓心角的度數(shù)=360°×=144°,
故答案為200,144.
(2)數(shù)學(xué)思維的人數(shù)=200﹣80﹣30﹣50=40(人),
條形圖如圖所示,
(3)該校700名學(xué)生有700×=140名學(xué)生參加了“數(shù)學(xué)思維”項(xiàng)目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y= x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)直線y=﹣x+n與該拋物線在第四象限內(nèi)交于點(diǎn)D,與線段BC交于點(diǎn)E,與x軸交于點(diǎn)F,且BE=4EC.
①求n的值;
②連接AC,CD,線段AC與線段DF交于點(diǎn)G,△AGF與△CGD是否全等?請說明理由;
(3)直線y=m(m>0)與該拋物線的交點(diǎn)為M,N(點(diǎn)M在點(diǎn)N的左側(cè)),點(diǎn) M關(guān)于y軸的對稱點(diǎn)為點(diǎn)M',點(diǎn)H的坐標(biāo)為(1,0).若四邊形OM'NH的面積為 .求點(diǎn)H到OM'的距離d的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計(jì)圖表:
甲、乙射擊成績統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 方差 | 命中10環(huán)的次數(shù) | |
甲 | 7 | |||
乙 | 1 |
(1)請補(bǔ)全上述圖表(請直接在表中填空和補(bǔ)全折線圖);
(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰將勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料: 如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說,到某個(gè)定點(diǎn)等于定長的所有點(diǎn)在同一個(gè)圓上,圓心在P(a,b),半徑為r的圓的方程可以寫為:(x﹣a)2+(y﹣b)2=r2 , 如:圓心在P(2,﹣1),半徑為5的圓方程為:(x﹣2)2+(y+1)2=25
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為;
②以B(﹣1,﹣2)為圓心, 為半徑的圓的方程為 .
(2)根據(jù)以上材料解決下列問題: 如圖2,以B(﹣6,0)為圓心的圓與y軸相切于原點(diǎn),C是⊙B上一點(diǎn),連接OC,作BD⊥OC垂足為D,延長BD交y軸于點(diǎn)E,已知sin∠AOC= .
①連接EC,證明EC是⊙B的切線;
②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO?若存在,求P點(diǎn)坐標(biāo),并寫出以P為圓心,以PB為半徑的⊙P的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個(gè)角:∠AOB,∠AOC和∠BOC,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.
(1)一個(gè)角的平分線 這個(gè)角的“巧分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN=α,且射線PQ是∠MPN的“巧分線”,則∠MPQ= ;(用含α的代數(shù)式表示出所有可能的結(jié)果)
【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點(diǎn)P從PN位置開始,以每秒10°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)PQ與PN成180°時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)的時(shí)間為t秒.
(3)當(dāng)t為何值時(shí),射線PM是∠QPN的“巧分線”;
(4)若射線PM同時(shí)繞點(diǎn)P以每秒5°的速度逆時(shí)針旋轉(zhuǎn),并與PQ同時(shí)停止,請直接寫出當(dāng)射線PQ是∠MPN的“巧分線”時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)在它的娛樂性節(jié)目中每期抽出兩名場外幸運(yùn)觀眾,有一期甲、乙兩人被抽為場外幸運(yùn)觀眾,他們獲得了一次抽獎(jiǎng)的機(jī)會(huì),在如圖所示的翻獎(jiǎng)牌的正面4個(gè)數(shù)字中任選一個(gè),選中后翻開,可以得到該數(shù)字反面的獎(jiǎng)品,第一個(gè)人選中的數(shù)字第二個(gè)人不能再選擇了.
(1)如果甲先抽獎(jiǎng),那么甲獲得“手機(jī)”的概率是多少?
(2)小亮同學(xué)說:甲先抽獎(jiǎng),乙后抽獎(jiǎng),甲、乙兩人獲得“手機(jī)”的概率不同,且甲獲得“手機(jī)”的概率更大些.你同意小亮同學(xué)的說法嗎?為什么?請用列表或畫樹狀圖分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上的一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長為32cm,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD折疊使A,C重合,折痕交BC于E,交AD于F,連接AE,CF,AC.
(1)求證:四邊形AECF為菱形;
(2)若AB=4,BC=8,①求菱形AECF的邊長;②求折痕EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com