【題目】如圖在正方形ABCD中,E,F,G,H分別是AD,DC,BC,CD上的點,連接EF,GH.
①若EF⊥GH,則必有EF=GH.
②若EF=GH,則必有EF⊥GH.
判斷上述兩個命題是否成立,若成立,請說明理由;若不成立,請舉出反例.
【答案】①②兩個命題成立;理由見解析.
【解析】
①作GM⊥CD于M,FN⊥AD于N,證明△EFN≌△HGM(ASA),即可得出EF=GH;
②作GM⊥CD于M,FN⊥AD于N,證明Rt△EFN≌Rt△HGM(HL),得出∠OGQ=∠PFQ,證出∠PQF+∠PFQ=90°,即可得出結論.
上述兩個命題成立.理由如下:
①作GM⊥CD于M,FN⊥AD于N,如圖所示,則∠GMH=∠FNE=90°.
∵ABCD是正方形,
∴∠A=∠D=90°.
∴ADMG是矩形,
∴GM=AD,
同理可證:NFCD是矩形,
∴NF=DC.
∵四邊形ABCD是正方形,
∴AD=DC,
∴FN=GM.
∵∠FND=∠D=∠GMD=90°,
∴∠MON=90°,
∴∠GOF=∠MON=90°,
∴∠OGQ+∠OQG=90°.
∵EF⊥GH,
∴∠PFQ+∠PQF=90°.
∵∠OQG=∠PQF,
∴∠OGQ=∠PFQ.
在△EFN和△HGM中,∵,
∴△EFN≌△HGM(ASA),
∴EF=GH;
②作GM⊥CD于M,FN⊥AD于N,如圖所示,則∠GMH=∠FNE=90°.
∵ABCD是正方形,
∴∠A=∠D=90°.
∴ADMG是矩形,
∴GM=AD,
同理可證:NFCD是矩形,
∴NF=DC.
∵四邊形ABCD是正方形,
∴AD=DC,
∴FN=GM.
在Rt△EFN和Rt△HGM中,∵,
∴Rt△EFN≌Rt△HGM(HL),
∴∠OGQ=∠PFQ.
∵∠OGQ+∠OQG=90°,∠OQG=∠PQF,
∴∠PQF+∠PFQ=90°,
∴∠FPQ=90°,
∴EF⊥GH.
科目:初中數學 來源: 題型:
【題目】某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿.當每個房間 每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據規(guī)定,每個房間每天的房價不得高于340元.設每個房間的房價增加x元(x為10的正整數倍).
(1)設一天訂住的房間數為y,直接寫出y與x的函數關系式及自變量x的取值范圍;
(2)設賓館一天的利潤為w元,求w與x的函數關系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程
(1)求證:方程總有兩個不相等的實數根。
(2)m為何整數時,此方程的兩個根都是正整數?
(3)若△ABC的兩邊AB,AC的長是這個方程的兩個實數根,第三邊BC的長為5,當△ABC是等腰三角形時,求m的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,矩形OABC的邊OC在y軸上,邊OA在x軸上,C點坐標為(0,3),點D是線段OA上的一個動點,連結CD,以CD為邊作矩形CDEF,使邊EF過點B.連結OF,當點D與點A重合時,所作矩形CDEF的面積為12.在點D的運動過程中,當線段OF有最大值時,則點F的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知二次函數經過點B(3,0),C(0,3),D(4,-5)
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)若P是拋物線上一點,且S△ABP=S△ABC,這樣的點P有幾個請直接寫出它們的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側山坡劃分為AB和BC兩段,每段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,坡角∠CBE=45°,則山峰的高度為( 。┟祝
A.500B.400+100C.D.541
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】振華書店準備購進甲、乙兩種圖書進行銷售,若購進本甲種圖書和本乙種圖書共需元,若購進本甲種圖書和本乙種圖書共需元.
求甲、乙兩種圖書每本進價各多少元;
該書店購進甲、乙兩種圖書共本進行銷售,且每本甲種圖書的售價為元,每本乙種圖書的售價為元,如果使本次購進圖書全部售出后所得利潤不低于元,那么該書店至少需要購進乙種圖書多少本?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com