【題目】(幾何背景)如圖1,AD為銳角△ABC的高,垂足為D.求證:AB2﹣AC2=BD2﹣CD2
(知識(shí)遷移)如圖2,矩形ABCD內(nèi)任意一點(diǎn)P,連接PA、PB、PC、PD,請(qǐng)寫(xiě)出PA、PB、PC、PD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(拓展應(yīng)用)如圖3,矩形ABCD內(nèi)一點(diǎn)P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c滿(mǎn)足a2﹣b2=c2,則的值為 (請(qǐng)直接寫(xiě)出結(jié)果)
【答案】【幾何背景】:詳見(jiàn)解析;【知識(shí)遷移】:詳見(jiàn)解析;【拓展應(yīng)用】:
【解析】
幾何背景:由 Rt△ABD中,AD2=AB2﹣BD2,Rt△ACD中,AD2=AC2﹣CD2,則結(jié)論可證.
知識(shí)遷移:過(guò)P點(diǎn)作PE⊥AD,延長(zhǎng)EP交BC于F,可證四邊形ABFE,四邊形DCFE是矩形.根據(jù)上面的結(jié)論求得PA、PB、PC、PD之間的數(shù)量關(guān)系.
拓展應(yīng)用:根據(jù)勾股定理可列方程組,可求PD=c,PC=c即可得.
解:幾何背景:在Rt△ABD中,AD2=AB2﹣BD2
Rt△ACD中,AD2=AC2﹣CD2,
∴AB2﹣BD2=AC2﹣CD2,
∴AB2﹣AC2=BD2﹣CD2.
知識(shí)遷移:BP2﹣PC2 =BF2﹣CF2.
如 圖:
過(guò)P點(diǎn)作PE⊥AD,延長(zhǎng)EP交BC于F
∴四邊形ABCD是矩形
∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°
又∵PE⊥AD
∴PF⊥BC
∵PE是△APD的高
∴PA2﹣PD2=AE2﹣DE2.
∵PF是△PBC的高
∴BP2﹣PC2 =BF2﹣CF2.
∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC
∴四邊形ABFE,四邊形DCFE是矩形
∴AE=BF,CF=DE
∴PA2﹣PD2=BP2﹣PC2.
拓展應(yīng)用:∵PA2﹣PD2=BP2﹣PC2.
∴PA2﹣PB2=c2.
∴PD2﹣PC2=c2.
且PD2+PC2=c2.
∴PD=c,PC=c
∴,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖,則下列結(jié)論:①k<0;②a>0;③關(guān)于x的方程kx﹣x=a﹣b的解是x=3;④當(dāng)x<3時(shí),y1<y2中.則正確的序號(hào)有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察圖,回答下列問(wèn)題
(1)在圖①中有幾個(gè)角?
(2)在圖②中有幾個(gè)角?
(3)在圖③中有幾個(gè)角?
(4)以此類(lèi)推,如圖④所示,若一個(gè)角有n條射線,此時(shí)共有多少個(gè)角?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸是一個(gè)非常重要的數(shù)學(xué)工具,通過(guò)它把數(shù)和數(shù)軸上的點(diǎn)建立起對(duì)應(yīng)關(guān)系,揭示了數(shù)與點(diǎn)之間的內(nèi)在聯(lián)系,也體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想.如圖,數(shù)軸上的點(diǎn)、、、、分別表示、、0、2.5、6,請(qǐng)利用數(shù)軸解決下列問(wèn)題:
(1)數(shù)軸上,、兩點(diǎn)之間的距離是 ,、兩點(diǎn)之間的距離是 ,到點(diǎn)的距離是3個(gè)單位長(zhǎng)度的點(diǎn)所表示的數(shù)是 .
(2)如果將點(diǎn)向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,請(qǐng)同學(xué)們?cè)跀?shù)軸上畫(huà)出點(diǎn)移動(dòng)的路線圖,并指出終點(diǎn)所表示的數(shù).
(3)如果點(diǎn)是數(shù)軸上的另一點(diǎn),將點(diǎn)向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,終點(diǎn)表示的數(shù)是,那么點(diǎn)表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,在九年級(jí)隨機(jī)抽取了一部分學(xué)生 的期末數(shù)學(xué)成績(jī)?yōu)闃颖,分?/span> A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下 問(wèn)題.
(1)這次隨機(jī)抽取的學(xué)生共有多少人?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這個(gè)學(xué)校九年級(jí)共有學(xué)生 1200 人,若分?jǐn)?shù)為 80 分(含 80 分)以上為優(yōu)秀,請(qǐng)估 計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市“藝術(shù)節(jié)”期間,小明、小亮都想去觀看茶藝表演,但是只有一張茶藝表演 門(mén)票,他們決定采用抽卡片的辦法確定誰(shuí)去.規(guī)則如下:
將正面分別標(biāo)有數(shù)字 1、2、3、4 的四張卡片(除數(shù)字外其余都相同)洗勻后,背面朝上 放置在桌面上,隨機(jī)抽出一張記下數(shù)字后放回;重新洗勻后背面朝上放置在桌面上, 再隨機(jī)抽出一張記下數(shù)字.如果兩個(gè)數(shù)字之和為奇數(shù),則小明去;如果兩個(gè)數(shù)字之和 為偶數(shù),則小亮去.
(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示抽出的兩張卡片上的數(shù)字之和的所有可能出現(xiàn) 的結(jié)果;
(2)你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:閱讀下列材料:已知二次三項(xiàng)式2x2+x+a有一個(gè)因式是(x+2),求另一個(gè)因式以及a 的值
解:設(shè)另一個(gè)因式是(2x+b),
根據(jù)題意,得2x2+x+a=(x+2)(2x+b),
展開(kāi),得2x2+x+a =2x2+(b+4)x+2b,
所以,解得,
所以,另一個(gè)因式是(2x3),a 的值是6.
請(qǐng)你仿照以上做法解答下題:已知二次三項(xiàng)式3x2 10x m 有一個(gè)因式是(x+4),求另一個(gè)因式以及m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC中,點(diǎn)D為邊BC上一點(diǎn),點(diǎn)E在邊AC上,且∠ADE=∠B
(1) 如圖1,若AB=AC,求證:;
(2) 如圖2,若AD=AE,求證:;
(3) 在(2)的條件下,若∠DAC=90°,且CE=4,tan∠BAD=,則AB=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BE∥AC,AE∥BD,OE與AB交于點(diǎn)F.
(1)試判斷四邊形AEBO的形狀,并說(shuō)明理由;
(2)若OE=10,AC=16,求菱形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com