【題目】如圖,二次函數(shù)y=ax2﹣3ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C直線y=﹣x+4經(jīng)過(guò)點(diǎn)B、C.
(1)求拋物線的表達(dá)式;
(2)過(guò)點(diǎn)A的直線交拋物線于點(diǎn)M,交直線BC于點(diǎn)N.
①點(diǎn)N位于x軸上方時(shí),是否存在這樣的點(diǎn)M,使得AM:NM=5:3?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
②連接AC,當(dāng)直線AM與直線BC的夾角∠ANB等于∠ACB的2倍時(shí),請(qǐng)求出點(diǎn)M的橫坐標(biāo).
【答案】(1)y=﹣x2+3x+4;(2)①不存在符合條件的M點(diǎn),理由見(jiàn)解析;②M.
【解析】
(1)由直線y=﹣x+4知:點(diǎn)B、C的坐標(biāo)分別為(4,0)、(0,4),則二次函數(shù)表達(dá)式為:y=ax2﹣3ax+4,將點(diǎn)A的坐標(biāo)代入上式,即可求解;
(2)①設(shè)點(diǎn)N(m,mk+k),即:mk+k=﹣m+4①,則點(diǎn),將點(diǎn)M的坐標(biāo)代入二次函數(shù)表達(dá)式得:②,聯(lián)立①②即可求解;②當(dāng)∠ANB=2∠ACB時(shí),則∠ANB=90°,即可求解.
解:(1)由直線y=﹣x+4知:點(diǎn)B、C的坐標(biāo)分別為(4,0)、(0,4),
則二次函數(shù)表達(dá)式為:y=ax2﹣3ax+4,將點(diǎn)A的坐標(biāo)代入上式并解得:a=﹣1,
故拋物線的表達(dá)式為:y=﹣x2+3x+4,
則點(diǎn)A(﹣1,0);
(2)①存在,理由:
設(shè)直線AM的表達(dá)式為:y=kx+b,
將點(diǎn)A的坐標(biāo)代入上式并解得:
直線AM的表達(dá)式為:y=kx+k,
如圖1所示,分別過(guò)點(diǎn)M、N作x軸的垂線交于點(diǎn)H、G,
∵AM:NM=5:3,則MH=NG,
設(shè)點(diǎn)N(m,mk+k),即:mk+k=﹣m+4…①,
則點(diǎn),
將點(diǎn)M的坐標(biāo)代入二次函數(shù)表達(dá)式得:
②,
聯(lián)立①②并整理得:5m2﹣2m+3=0,
△<0,故方程無(wú)解,
故不存在符合條件的M點(diǎn);
②當(dāng)∠ANB=2∠ACB時(shí),如下圖,
則∠NAC=∠NCA,、
∴CN=AN,
直線BC的表達(dá)式為:y=-x+4
設(shè)點(diǎn)N(n,-n+4),
由CN=AN,
即:(n)2+(4-n-4)2=(n+1)2+(4-n)2,
解得:
則點(diǎn),
將點(diǎn)N、A坐標(biāo)代入一次函數(shù)表達(dá)式并解得:
直線NA的表達(dá)式為:
將③式與二次函數(shù)表達(dá)式聯(lián)立并解得:
故點(diǎn)M
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小婷在放學(xué)路上,看到隧道上方有一塊宣傳“中國(guó)﹣南亞博覽會(huì)”的豎直標(biāo)語(yǔ)牌CD.她在A點(diǎn)測(cè)得標(biāo)語(yǔ)牌頂端D處的仰角為42°,測(cè)得隧道底端B處的俯角為30°(B,C,D在同一條直線上),AB=10m,隧道高6.5m(即BC=65m),求標(biāo)語(yǔ)牌CD的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第二屆“一帶一路”國(guó)際合作高峰論壇將于2019年4月在北京舉行.為了讓恩施特產(chǎn)走出大山,走向世界,恩施一民營(yíng)企業(yè)計(jì)劃生產(chǎn)甲、乙兩種商品共10萬(wàn)件,銷(xiāo)住“一帶一路”沿線國(guó)家和地區(qū).已知3件甲種商品與2件乙種商品的銷(xiāo)售收入相同,1件甲種商品比2件乙種商品的銷(xiāo)售收入少600元.甲、乙兩種商品的銷(xiāo)售利潤(rùn)分別為120元和200元
(1)甲、乙兩種商品的銷(xiāo)售單價(jià)各多少元?
(2)市場(chǎng)調(diào)研表明:所有商品能全部售出,企業(yè)要求生產(chǎn)乙種商品的數(shù)量不超過(guò)甲種商品數(shù)量的,且甲、乙兩種商品的銷(xiāo)售總收入不低于3300萬(wàn)元,請(qǐng)你為該企業(yè)設(shè)計(jì)一種生產(chǎn)方案,使銷(xiāo)售總利潤(rùn)最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購(gòu)物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫(huà)樹(shù)狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲口袋中裝有2個(gè)相同的小球,它們分別寫(xiě)有數(shù)值;乙口袋中裝有3個(gè)相同的小球,它們分別寫(xiě)有數(shù)值.現(xiàn)從甲口袋中隨機(jī)取一球,記它上面的數(shù)值為,再?gòu)囊铱诖须S機(jī)取一球,記它上面的數(shù)值為.設(shè)點(diǎn)的坐標(biāo)為.
(1)請(qǐng)用樹(shù)狀圖或列表法,列出所有可能的結(jié)果;
(2)求點(diǎn)落在第一象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC,對(duì)角線AC、BD交于點(diǎn)O,AO=BO,DE平分∠ADC交BC于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科幻小說(shuō)《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一天后,測(cè)試出這種植物高度的增長(zhǎng)情況(如表):
溫度 | …… | 0 | 2 | 4 | 4.5 | …… | ||
植物每天高度增長(zhǎng)量 | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
由這些數(shù)據(jù),科學(xué)家推測(cè)出植物每天高度增長(zhǎng)量是溫度的函數(shù),且這種函數(shù)是一次函數(shù)和二次函數(shù)中的一種.
(1)請(qǐng)你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡(jiǎn)要說(shuō)明不選擇另外一種函數(shù)的理由;
(2)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò),那么實(shí)驗(yàn)室的溫度應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一組等距的平行線,點(diǎn)A、B、C分別在直線l1、l6、l4上,AB交l3于點(diǎn)D,AC交l3于點(diǎn)E,BC交于l5點(diǎn)F,若△DEF的面積為1,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條河流經(jīng)過(guò)、兩個(gè)港口,水流的速度是4千米/時(shí).甲、乙兩船同時(shí)出發(fā),由港口順流駛向港口,甲船的靜水速度快于乙船的靜水速度.兩船分別到達(dá)港口后立即返回港口.兩船與港口的距離(千米)與出發(fā)時(shí)間(時(shí))之間的函數(shù)圖像如圖所示.
(1)、兩港口相距 千米.乙船在靜水中的速度為 千米/時(shí).
(2)求甲船從港口返回港口時(shí)與之間的函數(shù)關(guān)系式.
(3)求兩船在途中相遇時(shí),相遇處于港口之間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com