【題目】如圖,在平面直角坐標系中,線段AB的端點坐標為A(﹣1,2),B(3,1),若直線y=kx﹣2與線段AB有交點,則k的值可能是( 。
A. ﹣3B. ﹣2C. ﹣1D. 2
【答案】D
【解析】
先求出直線y=kx-2與y軸的交點C的坐標,再利用待定系數(shù)法求出直線AC、BC的解析式,然后根據(jù)直線與線段AB有交點,則k值小于AC的k值,或大于BC的k值,然后根據(jù)此范圍進行選擇即可.
解:令x=0,則y=0k﹣2=﹣2,
所以直線y=kx﹣2與y軸的交點坐標為(0,﹣2),
設直線AC的解析式為y=mx+n,
則,
解得.
所以直線AC的解析式為y=﹣4x﹣2,
設直線BC的解析式為y=ex+f,
則,
解得.
所以直線BC的解析式為y=x﹣2,
若直線y=kx﹣2與線段AB有交點,則k的取值范圍是k≤﹣4或k≥1,
縱觀各選項,只有D選項符號.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校數(shù)學興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,∠BAD=45°,AD與BE交于點F,連接CF.
(1)求證:BF=2AE;
(2)若CD=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,邊AB、AC的垂直平分線分別交BC于E、F,若∠EAF=90°,AF=3,AE=4.
(1)求邊BC的長;(2)求出∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進了A、B兩種型號家用凈水器共160臺,A型號家用凈水器進價是150元/臺,B型號家用凈水器進價是350元/臺,購進兩種型號的家用凈水器共用去36000元.
(1)求A、B兩種型號家用凈水器各購進了多少臺;
(2)為使每臺B型號家用凈水器的毛利潤是A型號的2倍,且保證售完這160臺家用凈水器的毛利潤不低于11000元,求每臺A型號家用凈水器的售價至少是多少元?(注:毛利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人準備在一段長為1200m的筆直公路上進行跑步,甲、乙跑步的速度分別為4m/s和6m/s,起跑前乙在起點,甲在乙前面100m處,兩人同時起跑.
(1)兩人出發(fā)后多長時間乙追上甲?
(2)求從起跑至其中一人先到達終點的過程中,甲、乙兩人之間的距離y(m)與時間t(s)的函數(shù)關系,并畫出y(m)與時間t(s)的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC。
理由如下:
AD⊥BC于D,EG⊥BC于G,(已知)
∠ADC=∠EGC=90°,( )
AD‖EG,( )
∠1=∠2,( )
=∠3,(兩直線平行,同位角相等)
又∠E=∠1(已知)
= (等量代換)
AD平分∠BAC( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD的對角線AC,BD互相垂直,則下列條件能判定四邊形ABCD為菱形的是( )
A. AC,BD互相平分
B. BA=BC
C. AC=BD
D. AB∥CD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com