【題目】校園安全受到全社會(huì)的廣泛關(guān)注.某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

1)接受問(wèn)卷調(diào)查的學(xué)生共有 人;

2)扇形統(tǒng)計(jì)圖中了解部分所對(duì)應(yīng)扇形的圓心角為 度;

3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

4)若該中學(xué)共有學(xué)生1200人,則該中學(xué)學(xué)生對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)約為多少人?

【答案】160;(290;(3)補(bǔ)全圖形見(jiàn)解析;(4900

【解析】

1)由基本了解的有30人,占50%,可求得接受問(wèn)卷調(diào)查的學(xué)生數(shù),

2)利用扇形統(tǒng)計(jì)圖中了解部分所占的百分比乘以 即可得到答案;

3)由(1)可求得了解很少的人數(shù),繼而補(bǔ)全條形統(tǒng)計(jì)圖;

4)利用樣本估計(jì)總體的方法,即可求得答案.

解:(1)接受問(wèn)卷調(diào)查的學(xué)生共有人.

2)扇形統(tǒng)計(jì)圖中了解部分所對(duì)應(yīng)扇形的圓心角為360°×=90°,

故答案為:60、90

3了解很少的人數(shù)為60-15+30+5=10人, 補(bǔ)全圖形如下:

4)估計(jì)該中學(xué)學(xué)生對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)為:

1200× =900人.

答:該中學(xué)學(xué)生對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)約為900人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明拿兩個(gè)大小不等直角三角板作拼圖,如圖①小三角板的斜邊與大三角板直角邊正好重合,已知:AD=1,∠B=∠ACD=30°.

(1)AB的長(zhǎng);四邊形ABCD的面積=(直接填空);
(2)如圖2,若小明將小三角板ACD沿著射線AB方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)A沿AB方向鎖經(jīng)過(guò)的線段長(zhǎng)度),當(dāng)點(diǎn)D平移到線段大三角板ABC的邊上時(shí),求出相應(yīng)的m的值;
(3)如圖3,小明將小三角板ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ACD為△AC′D′,在旋轉(zhuǎn)過(guò)程中,設(shè)C′D′所在的直線與直線BC交于點(diǎn)P,與直線AB交于點(diǎn)Q,是否存在這樣的P、Q兩點(diǎn),使△BPQ為等腰三角形?若存在,請(qǐng)直接求出此時(shí)D′Q的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】溫度的變化是人們經(jīng)常談?wù)摰脑掝},請(qǐng)根據(jù)圖象與同伴討論某天溫度變化的情況.

(1)這一天的最高溫度是多少?是在幾時(shí)到達(dá)的?最低溫度呢?

(2)這一天的溫差是多少?從最低溫度到最高溫度經(jīng)過(guò)多長(zhǎng)時(shí)間?

(3)在什么時(shí)間范圍內(nèi)溫度在上升?在什么時(shí)間范圍內(nèi)溫度在下降?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線 AC、BD 相交成的銳角α=30°,若 AC=8BD=6,則ABCD的面積是( )

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,點(diǎn) D 是邊 BC 上的點(diǎn)(與 B、C 兩點(diǎn)不重合,過(guò)點(diǎn) D DEAC,DFAB,分別交 AB、AC EF 兩點(diǎn),下列說(shuō)法正確的是(

A. AD 平分BAC,則四邊形 AEDF 是菱形

B. BDCD,則四邊形 AEDF 是菱形

C. AD 垂直平分 BC則四邊形 AEDF 是矩形

D. ADBC,則四邊形 AEDF 是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD內(nèi)有一點(diǎn)F,F(xiàn)BFC分別平分∠ABC和∠BCD,點(diǎn)E為矩形ABCD外一點(diǎn),連接BE,CE.現(xiàn)添加下列條件:①EBCF,CEBF;BE=CE,BE=BF;BECF,CEBE;BE=CE,CEBF,其中能判定四邊形BECF是正方形的共有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,EF過(guò)對(duì)角線的交點(diǎn)O,如果AB=6cm,AD=5cm,OF=2cm,那么四邊形 BCEF的周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)零件如圖所示

1)請(qǐng)說(shuō)明∠BDC >A

2)按規(guī)定∠A等于90°,∠B和∠C應(yīng)分別等于32°21°,檢驗(yàn)工人量得∠BDC等于148°,就斷定這個(gè)零件不合格,這是為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠A=∠D,有下列五個(gè)條件:①AE=DE,②BE=CE,③AB=DC,④∠ABC=∠DCB,⑤AC=BD,能證明△ABC與△DCB全等的條件有幾個(gè)?并選擇其中一個(gè)進(jìn)行證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案