【題目】如圖,在□ABCD中,對角線 AC、BD 相交成的銳角α=30°,若 AC=8,BD=6,則□ABCD的面積是( )
A.6B.8C.10D.12
【答案】D
【解析】
如圖,過點D作DE⊥AC于E點,設AC與BD相交于O點,首先根據平行四邊形性質得出DO=3,然后利用直角三角形中30°角所對的直角邊等于斜邊的一半求出DE,由此得出△ACD的面積,最后進一步通過證明△ADC△CBA得出△CBA的面積=△ADC的面積,從而即可得出答案.
如圖,過點D作DE⊥AC于E點,設AC與BD相交于O點,
∵在平行四邊形ABCD中,AC=8,BD=6,
∴DO=,
∵∠α=30°,DE⊥AC,
∴DE=,
∴△ACD的面積=,
∵四邊形ABCD為平行四邊形,
∴CD=AB,AD=BC,
在△ADC與△CBA中,
∵AD=CB,CD=AB,AC=CA,
∴△ADC△CBA(SSS),
∴△CBA的面積=△ADC的面積=6,
∴該平行四邊形的面積=△CBA的面積+△ADC的面積=12,
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,把矩形OCBA繞點C順時針旋轉α角,得到矩形FCDE,設FC與AB交于點H,且A(0,4),C(6,0).
(1)當α=45°時,求H點的坐標.
(2)當α=60°時,ΔCBD是什么特殊的三角形?說明理由.
(3)當AH=HC時,求直線HC的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點作垂線,圍成面積為的小正方形EFGH,已知AM為Rt△ABM較長直角邊,AM=EF,則正方形ABCD的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,N,P,G分別在邊AB,BC,CD,DA上,點M,F,Q都在對角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,點E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從數﹣2,﹣ ,0,4中任取一個數記為m,再從余下的三個數中,任取一個數記為n,若k=mn,則正比例函數y=kx的圖象經過第三、第一象限的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注.某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有 人;
(2)扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為 度;
(3)請補全條形統(tǒng)計圖;
(4)若該中學共有學生1200人,則該中學學生對校園安全知識達到“了解”和“基本了解”程度的總人數約為多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,E為CD邊上一點,且AE、BE分別平分∠DAB、∠ABC.
(1)求證:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一邊AB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,則∠A、∠C、∠E、∠F滿足的數量關系是( )
A. ∠A=∠C+∠E+∠F B. ∠A+∠E﹣∠C﹣∠F=180°
C. ∠A﹣∠E+∠C+∠F=90° D. ∠A+∠E+∠C+∠F=360°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com