精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,對角線 AC、BD 相交成的銳角α=30°,若 AC=8,BD=6,則ABCD的面積是( )

A.6B.8C.10D.12

【答案】D

【解析】

如圖,過點DDEACE點,設ACBD相交于O點,首先根據平行四邊形性質得出DO=3,然后利用直角三角形中30°角所對的直角邊等于斜邊的一半求出DE,由此得出△ACD的面積,最后進一步通過證明△ADCCBA得出△CBA的面積=ADC的面積,從而即可得出答案.

如圖,過點DDEACE點,設ACBD相交于O點,

∵在平行四邊形ABCD中,AC=8,BD=6,

DO=,

∵∠α=30°,DEAC,

DE=

∴△ACD的面積=,

∵四邊形ABCD為平行四邊形,

CD=AB,AD=BC

在△ADC與△CBA中,

AD=CB,CD=AB,AC=CA

∴△ADCCBASSS),

∴△CBA的面積=ADC的面積=6

∴該平行四邊形的面積=CBA的面積+ADC的面積=12,

故選:D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,把矩形OCBA繞點C順時針旋轉α,得到矩形FCDE,FCAB交于點H,A(0,4),C(6,0).

(1)α=45°時,求H點的坐標.

(2)α=60°,ΔCBD是什么特殊的三角形?說明理由.

(3)AH=HC,求直線HC的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點作垂線,圍成面積為的小正方形EFGH,已知AMRtABM較長直角邊,AM=EF,則正方形ABCD的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,N,P,G分別在邊AB,BC,CD,DA上,點M,F,Q都在對角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,點E、F分別在邊ABCD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從數﹣2,﹣ ,0,4中任取一個數記為m,再從余下的三個數中,任取一個數記為n,若k=mn,則正比例函數y=kx的圖象經過第三、第一象限的概率是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】校園安全受到全社會的廣泛關注.某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調查的學生共有 人;

2)扇形統(tǒng)計圖中了解部分所對應扇形的圓心角為 度;

3)請補全條形統(tǒng)計圖;

4)若該中學共有學生1200人,則該中學學生對校園安全知識達到了解基本了解程度的總人數約為多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,ECD邊上一點,且AE、BE分別平分∠DAB、∠ABC

1)求證:ADE≌△BCE;

2)已知AD3,求矩形的另一邊AB的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD,則∠A、∠C、∠E、∠F滿足的數量關系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

同步練習冊答案