如圖,順次連接邊長為1的正方形ABCD四邊的中點,得到四邊形A1B1C1D1,然后順次連接四邊形A1B1C1D1的中點,得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點,得到四邊形A3B3C3D3,…,按此方法得到的四邊形A8B8C8D8的周長為 .
【解析】順次連接正方形ABCD四邊的中點得正方形A1B1C1D1,則得正方形A1B1C1D1的面積為正方形ABCD面積的一半,即,則周長是原來的;
順次連接正方形A1B1C1D1中點得正方形A2B2C2D2,則正方形A2B2C2D2的面積為正方形A1B1C1D1面積的一半,即,則周長是原來的;
順次連接正方形A2B2C2D2得正方形A3B3C3D3,則正方形A3B3C3D3的面積為正方形A2B2C2D2面積的一半,即,則周長是原來的;
順次連接正方形A3B3C3D3中點得正方形A4B4C4D4,則正方形A4B4C4D4的面積為正方形A3B3C3D3面積的一半,則周長是原來的;
…
故第n個正方形周長是原來的,
以此類推:正方形A8B8C8D8周長是原來的,
∵正方形ABCD的邊長為1,
∴周長為4,
∴按此方法得到的四邊形A8B8C8D8的周長為.
科目:初中數學 來源: 題型:
如圖是二次函數圖象的一部分,圖象過點(-3,0),對稱軸為直線,給出四個結論:
①; ②; ③; ④.
其中正確的個數有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
海南有豐富的旅游產品.某校九年級(1)班的同學就部分旅游產品的喜愛情況對游客隨機調查,要求游客在列舉的旅游產品中選出喜愛的產品,且只能選一項,以下是同學們整理的不完整的統計圖:
根據以上信息完成下列問題:
(1)請將條形統計圖補充完整;
(2)隨機調查的游客有 人;在扇形統計圖中,A部分所占的圓心角是 度;
(3)請根據調查結果估計在1500名游客中喜愛黎錦的約有 人.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,AB是池塘兩端,設計一方法測量AB的距離,取點C,連接AC、BC,再取它們的中點D、E,測得DE=15米,則AB=( 。┟祝
A.7.5 B.15 C.22.5 D.30
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,一次函數y=kx+b(k≠0)的圖象過點P(﹣,0),且與反比例函數y=(m≠0)的圖象相交于點A(﹣2,1)和點B.
(1)求一次函數和反比例函數的解析式;
(2)求點B的坐標,并根據圖象回答:當x在什么范圍內取值時,一次函數的函數值小于反比例函數的函數值?
查看答案和解析>>
科目:初中數學 來源: 題型:
小宋作出了邊長為2的第一個正方形,算出了它的面積.然后分別取正方形四邊的中點 作出了第二個正方形,算出了它的面積.用同樣的方法,作出了
第三個正方形,算出了它的面積 ,由此可得,第六個正方形的面積
是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-1,0),對稱軸為直線x=2.
下列結論:
①4a+b=0;
②9a+c>3b;
③8a+7b+2c>0;
④當x>-1時,y的值隨x值的增大而增大.
其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數量關系?四邊形CHGK的面積有何變化?證明你發(fā)現的結論;(要有輔助線喲。
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的,若存在,求出此時x值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com