【題目】如圖,A,D是半圓上的兩點(diǎn),O為圓心,BC是直徑,∠D=35°,求∠OAC的度數(shù).
【答案】解法一: 解:∵∠D=35°,
∴∠B=∠D=35°,
∵BC是直徑,
∴∠BAC=90°.
∴∠ACB=90°﹣∠ABC=55°,
∵OA=OC,
∴∠OAC=∠OCA=55°.
解法二:
解:∵∠D=35°,
∴∠AOC=2∠D=70°,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠OAC+∠OCA+∠AOC=180°,
∴∠OAC=55°.
【解析】首先根據(jù)圓周角定理得到∠B的度數(shù),再求出∠ACB的度數(shù),結(jié)合三角形內(nèi)角和或者等腰三角形的性質(zhì)即可求出∠OAC的度數(shù).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓周角定理的相關(guān)知識(shí),掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)D、E分別是等邊△ABC邊AC、AB上的點(diǎn),連接BD、CE,若AE=CD,求證:BD=CE.
(2)如圖2,在(1)問的條件下,點(diǎn)H在BA的延長(zhǎng)線上,連接CH交BD延長(zhǎng)線于點(diǎn)F.若BF=BC,
①求證:EH=EC;
②請(qǐng)你找出線段AH、AD、DF之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)H在⊙O上,E是 的中點(diǎn),過點(diǎn)E作EC⊥AH,交AH的延長(zhǎng)線于點(diǎn)C.連接AE,過點(diǎn)E作EF⊥AB于點(diǎn)F.
(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AC和直線l分別垂直線段AB于點(diǎn)A,B.點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn),由A移動(dòng)到B,連接CP,過點(diǎn)P作PD⊥CP交l于點(diǎn)D,設(shè)線段AP的長(zhǎng)為x,BD的長(zhǎng)為y,在下列圖象中,能大致表示y與x之間函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=mx2+(3m+1)x+3.
(1)當(dāng)m取何值時(shí),此二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn);
(2)當(dāng)拋物線y=mx2+(3m+1)x+3與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且m為正整數(shù)時(shí),求此拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)A作⊙O的切線交BC的延長(zhǎng)線于點(diǎn)F,連接AE.
(1)求證:∠ABC=2∠CAF;
(2)過點(diǎn)C作CM⊥AF于M點(diǎn),若CM=4,BE=6,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有三個(gè)分別寫有數(shù)字6,﹣2,7的小球,它們的形狀、大小、質(zhì)地完全相同,先從盒子里隨機(jī)抽取一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字,請(qǐng)你用畫樹狀圖或列表的方法求兩次取出小球上的數(shù)字和大于10的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3)
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別為AB、AC邊上的點(diǎn),DE∥BC,點(diǎn)F為BC邊上一點(diǎn),連接AF交DE于點(diǎn)G,則下列結(jié)論中一定正確的是( )
A. =
B. =
C. =
D. =
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com