【題目】已知菱形OABC在平面直角坐標(biāo)系的位置如圖所示,頂點(diǎn)A5,0),OB=4,點(diǎn)P是對角線OB上的一個動點(diǎn),D0,1),當(dāng)CP+DP最短時,點(diǎn)P的坐標(biāo)為(

A. 0,0B. 1C. ,D.

【答案】D

【解析】

如圖連接AC,AD,分別交OBGP,作BKOAK.首先說明點(diǎn)P就是所求的點(diǎn),再求出點(diǎn)B坐標(biāo),求出直線OB、DA,列方程組即可解決問題.

如圖連接AC,AD,分別交OBG、P,作BKOAK

∵四邊形OABC是菱形,
ACOB,GC=AGOG=BG=2,AC關(guān)于直線OB對稱,
PC+PD=PA+PD=DA,
∴此時PC+PD最短,
RTAOG中,AG= ,

,

,

,

∴點(diǎn)B坐標(biāo)(8,4),
∴直線OB解析式為y=x,直線AD解析式為y=-x+1

,解得: ,

即點(diǎn)P的坐標(biāo)為(,.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行“行動起來,對抗霧霾”為主題的植樹活動,某街道積極響應(yīng),決定對該街道進(jìn)行綠化改造,共購進(jìn)甲、乙兩種樹共50棵,已知甲樹每棵800元,乙樹每棵1200元.

1)若購買兩種樹的總金額為56000元,求甲、乙兩種樹各購買了多少棵?

2)若購買甲樹的金額不少于購買乙樹的金額,至少應(yīng)購買甲樹多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠B =C,點(diǎn)D、E分別是邊AB、AC上的點(diǎn),PD平分∠BDEBCH,PE平分∠DECBCG,DQ平分∠ADEPE延長線于Q。

1)∠A+B+C+P +Q = °;

2)猜想∠P與∠A的數(shù)量關(guān)系,并證明你的猜想;

3)若∠EGH =112°,求∠ADQ 的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC的三個頂點(diǎn)分別為A-3,2),B-3,-2),C3-2).將ABC平移,使點(diǎn)A與點(diǎn)M2,3)重合,得到MNP

1)將ABC 平移 個單位長度,然后再向 平移 個單位長度,可以得到MNP

2)畫出MNP

3)在(1)的平移過程中,線段AC掃過的面積為 (只需填入數(shù)值,不必寫單位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直角梯形ABCD中,AD∥BC∠ADC=90°,AD=8,BC=6,點(diǎn)M從點(diǎn)D出發(fā),以每秒2個單位長度的速度向點(diǎn)A運(yùn)動,同時,點(diǎn)N從點(diǎn)B出發(fā),以每秒1個單位長度的速度向點(diǎn)C運(yùn)動.其中一個動點(diǎn)到達(dá)終點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.過點(diǎn)NNP⊥AD于點(diǎn)P,連接ACNP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動時間為t秒.

1AM= AP= .(用含t的代數(shù)式表示)

2)當(dāng)四邊形ANCP為平行四邊形時,求t的值

3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時刻t

使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由

使四邊形AQMK為正方形,則AC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題.

學(xué)校要購買A,B兩種型號的足球,按體育器材門市足球銷售價格(單價)計算:若買2個A型足球和3個B型足球,則要花費(fèi)370元,若買3個A型足球和1個B型足球,則要花費(fèi)240元.

(1)求A,B兩種型號足球的銷售價格各是多少元/個?

(2)學(xué)校擬向該體育器材門市購買A,B兩種型號的足球共20個,且費(fèi)用不低于1300元,不超過1500元,則有哪幾種購球方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將直角三角形ACB, ,AC=6,沿CB方向平移得直角三角形DEFBF=2,DG=,陰影部分面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格圖中有ABC,建立平面直角坐標(biāo)系后,點(diǎn)O的坐標(biāo)是(0,0).

(1)以O為位似中心,作A′B′C′ABC,A′B′C′ABC相似比為2:1,且A′B′C′在第二象限;

(2)在上面所畫的圖形中,若線段AC上有一點(diǎn)D,它的橫坐標(biāo)為k,點(diǎn)DA′C′上的對應(yīng)點(diǎn)D′的橫坐標(biāo)為﹣2﹣k,則k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)P是線段AD上的一個動點(diǎn),OBD的中點(diǎn),PO的延長線交BCQ

1)求證:OP=OQ

2)若AD=8cm,AB=6cm,點(diǎn)P從點(diǎn)A出發(fā),以 的速度向點(diǎn)D 運(yùn)動(不與D重合).設(shè)點(diǎn)P運(yùn)動的時間為t秒,請用t表示PD的長;

3)當(dāng)t為何值時,四邊形PBQD是菱形?

查看答案和解析>>

同步練習(xí)冊答案