【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
【答案】(1)y=﹣2x+12;y=﹣;(2)140;(3)x≥10,或﹣4≤x<0;
【解析】
(1)根據(jù)OA、OB的長寫出A、B兩點(diǎn)的坐標(biāo),再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點(diǎn)C的坐標(biāo),進(jìn)而求出反比例函數(shù)的解析式.
(2)聯(lián)立方程組求解出交點(diǎn)坐標(biāo)即可.
(3)觀察函數(shù)圖象,當(dāng)函數(shù)y=kx+b的圖像處于下方或與其有重合點(diǎn)時,x的取值范圍即為的解集.
(1)由已知,OA=6,OB=12,OD=4,
∵CD⊥x軸,
∴OB∥CD,
∴△ABO∽△ACD,
∴,
∴,
∴CD=20,
∴點(diǎn)C坐標(biāo)為(﹣4,20),
∴n=xy=﹣80.
∴反比例函數(shù)解析式為:y=﹣,
把點(diǎn)A(6,0),B(0,12)代入y=kx+b得:,
解得:.
∴一次函數(shù)解析式為:y=﹣2x+12,
(2)當(dāng)﹣=﹣2x+12時,解得,
x1=10,x2=﹣4,
當(dāng)x=10時,y=﹣8,
∴點(diǎn)E坐標(biāo)為(10,﹣8),
∴S△CDE=S△CDA+S△EDA=.
(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,
∴由圖象得,x≥10,或﹣4≤x<0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知△ABC為等邊三角形,動點(diǎn)D在邊AC上,動點(diǎn)P在邊BC上,若這兩點(diǎn)分別從C、B點(diǎn)同時出發(fā),以相同的速度由C向A和由B向C運(yùn)動,連結(jié)AP、BD交于Q,兩點(diǎn)運(yùn)動的過程中,AP=BD成立嗎?請證明你的結(jié)論.
(2)如果把原題中的“動點(diǎn)D在邊AC上,動點(diǎn)P在邊BC上,”改為:“動點(diǎn)D在射線CA上、動點(diǎn)P在射線BC上運(yùn)動,”其他條件不變,如圖2所示,AP=BD還成立嗎?說明理由,并求出∠BQP的大。
(3)如果把原題中的“動點(diǎn)P在邊BC上”,改為“動點(diǎn)P在射線AB上運(yùn)動”,連結(jié)DP交BC于E,其他條件不變,如圖3,則動點(diǎn)D、P在運(yùn)動過程中,請你寫出DE與PE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動手操作:如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=4,點(diǎn)D為邊AC上一動點(diǎn),DE⊥AB交AB于點(diǎn)E,將∠A沿直線DE折疊,點(diǎn)A的對應(yīng)點(diǎn)為F.當(dāng)△DFC是直角三角形時,AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+b與反比例函數(shù)y=(k≠0)的圖象相交于點(diǎn)P,則關(guān)于x的方程﹣x+b=的解是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)填寫下表,觀察被開方數(shù)的小數(shù)點(diǎn)與算術(shù)平方根的小數(shù)點(diǎn)的移動規(guī)律:
0.0016 | 0.16 | 16 | 1600 | |
0.04 | 0.4 |
(2)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:
①已知,則 .
②已知,,則是的 倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(6x-1)2=25;
(2)x2-2x=2x-1;
(3)x2-x=2;
(4)x(x-7)=8(7-x).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論①△AEF≌△AED;②∠AED=45°;③BE+DC=DE; ④BE+DC=DE,其中正確的是( 。
A. ②④ B. ①④ C. ②③ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是上一點(diǎn),過點(diǎn)作的切線,交的延長線于點(diǎn),取的中點(diǎn),的延長線與的延長線交于點(diǎn).
求證:是的切線;
若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x1、x2是一元二次方程2x2﹣7x+5=0的兩根,利用一元二次方程根與系數(shù)的關(guān)系,求下列各式的值.
(1)x12x2+x1x22; (2)(x1﹣x2)2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com