【題目】1)填寫下表,觀察被開方數(shù)的小數(shù)點與算術(shù)平方根的小數(shù)點的移動規(guī)律:

0.0016

0.16

16

1600

0.04

0.4

2)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:

①已知,則

②已知,,則 倍.

【答案】1 4,40 ;(2)①1.99;②10000

【解析】

1)根據(jù)算術(shù)平方根的定義先求出每一個數(shù)的算術(shù)平方根,然后再根據(jù)小數(shù)點的變化進行解答;

2)①根據(jù)(1)中的規(guī)律對小數(shù)點移動進行求解即可;

②根據(jù)(1)中的規(guī)律對小數(shù)點移動進行求解即可.

1)∵0.042=0.0016,∴0.04

同理:0.4,

4;

40

故答案為:4,40;

2)①由表格可知,被開方數(shù)a 的小數(shù)點向右(或向左)每移動兩位時,的小數(shù)點向右(或向左)移動1位,

根據(jù)此規(guī)律,可得1.99

故答案為:1.99;

②由表格可知,被開方數(shù)a 的小數(shù)點向右(或向左)每移動兩位時,的小數(shù)點向右(或向左)移動1位,已知0.34534.5,則nm10000倍.

故答案為:10000

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)化簡:[xx2y2xy)﹣2yx2x3y]÷3x2y

2)化簡求值:(x+2y2﹣(x2y2﹣(x+2y)(x2y)﹣4y2,其中y1x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBCE,AFCDF,且∠EAF=60°,BE=2cm,DF=3cm,試求平行四邊形ABCD的周長及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連結(jié)AE、DEDC

①求證:△ABE≌△CBD;

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=k1x+bx軸、y軸相交于P、Q兩點,與y=的圖象相交于A(﹣2,m)、B(1,n)兩點,連接OA、OB,給出下列結(jié)論:①k1k2<0;m+n=0;SAOP=SBOQ;④不等式k1x+b>的解集是x<﹣20<x<1,其中正確的結(jié)論的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,MN分別是BC、DC的中點,AM4AN3,且∠MAN60°,則AB的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,若分得的兩個小三角形中一個三角形為等腰三角形,另一個三角形的三個內(nèi)角與原來三角形的三個內(nèi)角分別相等,則稱這條線段叫做這個三角形的等角分割線

例如,等腰直角三角形斜邊上的高就是這個等腰直角三角形的一條等角分割線

(1)如圖1,在△ABC中,D是邊BC上一點,若∠B=30°∠BAD=∠C=40°,求證: AD△ABC等角分割線;

(2)如圖2△ABC中,∠C=90°,∠B=30°;

畫出△ABC等角分割線,寫出畫法并說明理由;

BC=3,求出中畫出的等角分割線的長度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點邊上(端點除外)的一個動點,過點作直線.設(shè)的平分線于點,交的外角平分線于點,連接、.那么當(dāng)點運動到何處時,四邊形是矩形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案