【題目】已知,拋物線C1:
(1) ① 無(wú)論m取何值,拋物線經(jīng)過(guò)定點(diǎn)P
② 隨著m的取值的變化,頂點(diǎn)M(x,y)隨之變化,y是x的函數(shù),則點(diǎn)M滿足的函數(shù)C2的關(guān)系式為__________________
(2) 如圖1,拋物線C1與x軸僅有一個(gè)公共點(diǎn),請(qǐng)?jiān)趫D1畫(huà)出頂點(diǎn)M滿足的函數(shù)C2的大致圖象,平行于y軸的直線l分別交C1、C2于點(diǎn)A、B.若△PAB為等腰直角三角形,判斷直線l滿足的條件,并說(shuō)明理由
(3) 如圖2,二次函數(shù)的圖象C1的頂點(diǎn)M在第二象限、交x軸于另一點(diǎn)C,拋物線上點(diǎn)M與點(diǎn)P之間一點(diǎn)D的橫坐標(biāo)為-2,連接PD、CD、CM、DM.若S△PCD=S△MCD,求二次函數(shù)的解析式
【答案】(1)①(-1,0 )②;(2)詳見(jiàn)解析;(3)詳見(jiàn)解析.
【解析】試題分析:(1)①直接得出點(diǎn)的坐標(biāo);②用配方法確定出拋物線的頂點(diǎn)式方程,即可得出結(jié)論
(2)先確定出拋物線的解析式,得出此兩個(gè)函數(shù)圖形關(guān)于軸對(duì)稱,從而設(shè)出點(diǎn)的坐標(biāo),最后利用等腰直角三角形的性質(zhì)列出方程,解方程即可得出結(jié)論;
(3)方法一:先確定出點(diǎn)坐標(biāo),根據(jù)條件確定出四邊形的面積是面積的2倍,列出方程即可確定出.最后代入解析式即可;
方法二:先確定出直線解析式,再用到坐標(biāo)系下的三角形面積公式(水平寬乘以鉛垂高的一半建立方程的)分別表示出和,從而建立方程求解,再代入解析式即可.
試題解析:(1)①∵拋物線
∴當(dāng)x+1=0時(shí),無(wú)論m為何值,拋物線經(jīng)過(guò)頂點(diǎn)P,
∴x=1,y=0,
∴定點(diǎn)P(1,0),
故答案為:1,0;
②拋物線
∴
∴函數(shù)的關(guān)系式為
故答案為:
(2)如圖1所示,
∵拋物線頂點(diǎn)在x軸,則m=1,
∴拋物線 P(1,0),
由②知,函數(shù)的關(guān)系式為
∴拋物線與關(guān)于x軸對(duì)稱,
∵△PAB為等腰直角三角形,
∴直角頂點(diǎn)只能是點(diǎn)P,且PC=BC=AC,
設(shè)
∴ ∴PC=|n+1|,
∴ ∴n=1(舍)或n=1或n=3.
∴直線l的解析式為x=1或x=3.
(3)方法一:如圖2,過(guò)點(diǎn)M作ME⊥OC,過(guò)點(diǎn)D作DF⊥OC,
∵拋物線
∴P(1,0),C(2m+1,0),
∵拋物線上點(diǎn)M與點(diǎn)P之間一點(diǎn)D的橫坐標(biāo)為2,
∴
∴
∵
S四邊形CPDM=S△DFP+S梯形DFEM+S△CEM
∴PF×DF+EF×DF+ME×EF+CE×ME=2PC×DF,
∴DF(PF+EF)+ME(EF+CE)=2PC×DF,
∴DF×PE+ME×CF=2PC×DF,
∴DF×12PC+ME(PCPF)=2PC×DF,
∴DF×PC+2ME×PC2ME×PF=4PC×DF,
∴2ME×PC3PC×DF=2ME×PF,
∴PC(2ME3DF)=2ME×PF,
∴(m+1)(m+4)(2m+3)=0,
∴m=1(舍)或m=4或
當(dāng)m=4時(shí),二次函數(shù)的解析式
當(dāng)時(shí),二次函數(shù)的解析式
方法二,如圖,過(guò)點(diǎn)M作ME⊥x軸交CD于E,過(guò)點(diǎn)D作DF⊥x軸,
∵拋物線
∴P(1,0),C(2m+1,0),
∵拋物線上點(diǎn)M與點(diǎn)P之間一點(diǎn)D的橫坐標(biāo)為2,
∴
∴直線CD解析式為
∴
∵
∴(m+1)(m+4)(2m+3)=0,
∴m=1(舍)或m=4或
當(dāng)m=4時(shí),二次函數(shù)的解析式
當(dāng)時(shí),二次函數(shù)的解析式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
(1)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B1C1;
(2)直接寫(xiě)出:以A、B、C為頂點(diǎn)的平形四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣3,0),(0,6).動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)C從B出發(fā),沿射線BO方向以每秒2個(gè)單位的速度運(yùn)動(dòng),以CP,CO為鄰邊構(gòu)造平行四邊形PCOD,在線段OP延長(zhǎng)線上取點(diǎn)E,使PE=AO,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)直接寫(xiě)出當(dāng)點(diǎn)C運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),求t的值及點(diǎn)E的坐標(biāo).
(2)當(dāng)點(diǎn)C在線段OB上運(yùn)動(dòng)時(shí),四邊形ADEC的面積為S.
①求證:四邊形ADEC為平行四邊形.
②寫(xiě)出s與t的函數(shù)關(guān)系式,并求出t的取值范圍.
(3)是否存在某一時(shí)刻,使OC是PC的一半?若存在,求出t的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上,點(diǎn)O為原點(diǎn),點(diǎn)A表示的數(shù)為9,動(dòng)點(diǎn)B,C在數(shù)軸上移動(dòng),且總保持BC=2(點(diǎn)C在點(diǎn)B右側(cè)),設(shè)點(diǎn)B表示的數(shù)為m.
(1) 如圖1,當(dāng)B,C在線段OA上移動(dòng)時(shí),
① 若B為OA中點(diǎn),則AC= ;
② 若B,C移動(dòng)到某一位置時(shí),恰好滿足AC=OB,求此時(shí)m的值;
(2) 當(dāng)線段BC沿射線AO方向移動(dòng)時(shí),若存在AC-OB=AB,求滿足條件的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交CD的延長(zhǎng)線于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC,∠BAC=90°,點(diǎn)D,E分別為邊AB,BC的中點(diǎn),點(diǎn)F在CA延長(zhǎng)線上,且∠FDA=∠B.
(1)求證:AF=DE;
(2)若AC=3,BC=5,求四邊形AEDF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上的點(diǎn)A對(duì)應(yīng)的數(shù)為6,B是數(shù)軸上的一點(diǎn),且AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿著數(shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是________,點(diǎn)P對(duì)應(yīng)的數(shù)是_________(用t的式了表示);
(2)動(dòng)點(diǎn)Q從點(diǎn)B與點(diǎn)P同時(shí)發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿著數(shù)軸向左勻速運(yùn)動(dòng),試問(wèn):運(yùn)動(dòng)多少時(shí)間點(diǎn)P可以追上點(diǎn)Q?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結(jié)論:①AD=BC;②BD、AC互相平分;③四邊形ACED是菱形.其中正確的個(gè)數(shù)是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長(zhǎng)AB與DE的延長(zhǎng)線交于點(diǎn)F,連接AC、CF. 下列結(jié)論:①△ABC≌△EAD;②△ABE是等邊三角形;③AD=AF;④S△BEF=S△ABE.其中正確的有( )
A.1個(gè)B.2個(gè)
C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com