【題目】如圖,在平面直角坐標系中,邊長為2的正方形ABCD關(guān)于y軸對稱,邊ADx軸上,點B在第四象限,直線BD與反比例函數(shù)的圖象交于點B、E.

1)求反比例函數(shù)及直線BD的解析式;

2)求點E的坐標;

3)連結(jié)、,求△的面積.

【答案】1)反比例函數(shù)解析式: ,直線BD的解析式: ;(2E-2,1);(34.

【解析】試題分析:(1)根據(jù)正方形的邊長,正方形關(guān)于y軸對稱,可得點A、B、D的坐標,根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)兩個函數(shù)解析式,可的方程組,根據(jù)解方程組,可得答案.

(3)如圖,連接EC,求出EC的解析式為y=-3x-5,再求出直線與x軸的交點P的坐標(,0),分別求出ΔEPA和ΔCPA的面積即可得解.

試題解析:(1)邊長為2的正方形ABCD關(guān)于y軸對稱,邊在ADx軸上,點B在第四象限,C在第三象限,
A(1,0),D(-1,0),B(1,-2),C(1-,-2).
∵反比例函數(shù)y=的圖象過點B,
=-2,k=-2,
∴反比例函數(shù)解析式為y=-,
設(shè)直線BD的解析式為y=kx+b,
,解得
直線BD的解析式y=-x-1;
(2)∵直線BD與反比例函數(shù)y=的圖象交于點E,
,解得,
B(1,-2),
E(-2,1).

(3)連接ECx軸于點P,設(shè)EC所在的直線解析式為:y=kx+b,則有:

解得:

EC所在直線解析式為:y=-3x-5.

y=0時,x=-

AP=

SΔEAC=SΔEPA+SΔCPA=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級數(shù)學興趣小組的同學調(diào)查了若干名家長對初中生帶手機上學現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖。依據(jù)圖中信息,解答下列問題:

1)接受這次調(diào)查的家長共有 人;

2)補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,很贊同的家長占被調(diào)查家長總數(shù)的百分比是 ;

4)在扇形統(tǒng)計圖中,不贊同的家長部分所對應(yīng)扇形的圓心角度數(shù)是 度.

5)請同學們對初中生帶手機上學現(xiàn)象說說你的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 哥哥的身高比弟弟高是必然事件

B. 今年的12月1日有雨是不確定事件

C. 隨機擲一枚均勻的硬幣兩次,都是正面朝上是不可能事件

D. “彩票中獎的概率為”表示買5張彩票肯定會中獎

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同底數(shù)冪相乘,____________不變,____________相加,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點P是∠ABC內(nèi)一點.

(1)畫圖①過點PBC的垂線,垂足為D過點PBC的平行線交AB于點E,過點PAB的平行線交BC于點F

(2)∠EPF等于∠B?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)商計劃將一批海產(chǎn)品由A地運往B地.汽車貨運公司和鐵路貨運公司均開辦海產(chǎn)品運輸業(yè)務(wù).已知運輸路程為120千米,汽車和火車的速度分別為60千米/時、100千米/時.兩貨運公司的收費項目及收費標準如下表所示:

運輸工具

運輸費單價/

(元/噸·千米)

冷藏費單價/

(元/噸·小時)

過路費/元

裝卸及管理費/元

2

5

200

0

1.8

5

0

1600

注:“元/噸·千米”表示每噸貨物每千米的運費;“元/噸·小時”表示每噸貨物每小時的冷藏費.

(1)設(shè)該批發(fā)商待運的海產(chǎn)品有x(),汽車貨運公司和鐵路貨運公司所要收取的費用分別為y1()y2(),試求y1、y2x之間的函數(shù)關(guān)系式.

(2)若該批發(fā)商待運的海產(chǎn)品不少于30噸,為節(jié)省運費,他應(yīng)選擇哪個貨運公司承擔運輸業(yè)務(wù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)一塊長方形菜地的面積是150 m2,如果它的長減少5 m,那么菜地就變成正方形,若設(shè)原菜地的長為x m,則可列方程為___________________________________;

(2)已知如圖所示的圖形的面積為24,根據(jù)圖中的條件,可列方程為__________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣45),(﹣13).

1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;

2)請作出ABC關(guān)于y軸對稱的A1B1C1

3)寫出點B1的坐標;

4)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師家買了一套新房,其結(jié)構(gòu)如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

(1)木地板和地磚分別需要多少平方米

(2)如果地磚的價格為每平方米x,木地板的價格為每平方米3x那么王老師需要花多少錢?

查看答案和解析>>

同步練習冊答案