【題目】已知,如圖ABC中,D是AB的中點(diǎn),E是AC上一點(diǎn),EFAB,DFBE

(1)猜想:DF與AE的關(guān)系是 ;

(2)試說(shuō)明你猜想的正確性.

【答案】1DF與AE互相平分;2)證明見(jiàn)解析

【解析】

試題分析:(1)DF與AE互相平分.

(2)由已知可得四邊形BDFE是平行四邊形,從而可得BD=EF,由中點(diǎn)的定義可得AD=BD,再根據(jù)平行線的性質(zhì)即可得到ADO=EFO,DAO=FEO,從而可利用ASA判定ADO≌△EFO,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得到OD=OF,OA=OE,即得到AE與DF互相平分,或連接AF、DE,然后證明四邊形DEFA是平行四邊形,再根據(jù)平行四邊形的對(duì)角線互相平分證明.

解:(1)DF與AE互相平分;

D是AB的中點(diǎn),

AD=BD

EFAB,DFBE,

四邊形BEFD是平行四邊形,

EF=BD=AD,

EFAB,

EFAD,

EFAD,EF=AD,

四邊形AFED是平行四邊形,

DF、AE是平行四邊形AFED的對(duì)角線,

DF、AE互相平分;

(2)EFAB,DFBE,

四邊形BDFE是平行四邊形,

BD=EF,

D是AB的中點(diǎn),

AD=BD,

EF=AD,

EFAB,

∴∠ADO=EFODAO=FEO,

ADOEFO中,

,

∴△ADO≌△EFO,

OD=OF,OA=OE,

即AE與DF互相平分;

或連接AF、DE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若1=110°,則α=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OABC的外接圓,AM是O的直徑,過(guò)點(diǎn)A作APAM

(1)求證:PAC=ABC

(2)連接PB與AC交于點(diǎn)D,與O交于點(diǎn)E,F(xiàn)為BD上的一點(diǎn),若M為BC的中點(diǎn),且DCF=P,求證:=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正六邊形ABCDEF的每一個(gè)外角的度數(shù)是__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為m

1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

2)一輛貨運(yùn)汽車(chē)載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車(chē)道,那么這輛貨車(chē)能否安全通過(guò)?

3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P在第三象限內(nèi),P到x軸的距離是4,到y(tǒng)軸的距離是3,那么點(diǎn)P的坐標(biāo)為( )

A. (-4,-3) B. (-3,4) C. (-3,-4) D. (3,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的個(gè)數(shù)是( )

整數(shù)是指正整數(shù)和負(fù)整數(shù);任何數(shù)的絕對(duì)值都是正數(shù);零是最小的整數(shù);④一個(gè)負(fù)數(shù)的絕對(duì)值一定是正數(shù)。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷(xiāo)售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷(xiāo)售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.

(1)李明在開(kāi)始創(chuàng)業(yè)的第一個(gè)月將銷(xiāo)售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?

(2)設(shè)李明獲得的利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

(3)物價(jià)部門(mén)規(guī)定,這種節(jié)能燈的銷(xiāo)售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于3000元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知ABCD中,以AB為斜邊在ABCD內(nèi)作等腰直角ABE,且AE=AD,連接DE,過(guò)E作EFDE交AB于F交DC于G,且AEF=15°

(1)若EF=,求AB的長(zhǎng).

(2)求證:2GE+EF=AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案