【題目】如圖,在數(shù)軸上點A表示的數(shù)a、點B表示數(shù)b,a、b滿足|a﹣30|+(b+6)2=0.點O是數(shù)軸原點.
(1)點A表示的數(shù)為 ,點B表示的數(shù)為 ,線段AB的長為 .
(2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數(shù)軸上找一點C,使AC=2BC,則點C在數(shù)軸上表示的數(shù)為 .
(3)現(xiàn)有動點P、Q都從B點出發(fā),點P以每秒1個單位長度的速度向終點A移動;當點P移動到O點時,點Q才從B點出發(fā),并以每秒3個單位長度的速度向右移動,且當點P到達A點時,點Q就停止移動,設點P移動的時間為t秒,問:當t為多少時,P、Q兩點相距4個單位長度?
【答案】(1)30,﹣6, 36;(2)6或﹣42;(3)當t為4秒、7秒和11秒時,P、Q兩點相距4個單位長度.
【解析】
(1)根據(jù)偶次方以及絕對值的非負性即可求出a、b的值,可得點A表示的數(shù),點B表示的數(shù),再根據(jù)兩點間的距離公式可求線段AB的長;(2)分兩種情況:點C在線段AB上,點C在射線AB上,進行討論即可求解;(3)分0<t≤6、6<x≤9和9<t≤30三種情況考慮,根據(jù)兩點間的距離公式結合PQ=4即可得出關于t的一元一次方程,解之即可得出結論.
(1)∵|a﹣30|+(b+6)2=0,
∴a﹣30=0,b+6=0,
解得a=30,b=﹣6,
AB=30﹣(﹣6)=36.
故點A表示的數(shù)為30,點B表示的數(shù)為﹣6,線段AB的長為36.
(2)點C在線段AB上,
∵AC=2BC,
∴AC=36×=24,
點C在數(shù)軸上表示的數(shù)為30﹣24=6;
點C在射線AB上,
∵AC=2BC,
∴AC=36×2=72,
點C在數(shù)軸上表示的數(shù)為30﹣72=﹣42.
故點C在數(shù)軸上表示的數(shù)為6或﹣42;
(3)經(jīng)過t秒后,點P表示的數(shù)為t﹣6,點Q表示的數(shù)為,
(i)當0<t≤6時,點Q還在點A處,
∴PQ=t﹣6﹣(﹣6)=t=4;
(ii)當6<x≤9時,點P在點Q的右側,
∴(t﹣6)﹣[3(t﹣6)﹣6]=4,
解得:t=7;
(iii)當9<t≤30時,點P在點Q的左側,
∴3(t﹣6)﹣6﹣(t﹣6)=4,
解得:t=11.
綜上所述:當t為4秒、7秒和11秒時,P、Q兩點相距4個單位長度.
故答案為:30,﹣6,36;6或﹣42.
科目:初中數(shù)學 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:
請你根據(jù)圖中的信息,解答下列問題:
()寫出扇形圖中__________,并補全條形圖.
()在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是__________個、__________個.
()該區(qū)體育中考選報引體向上的男生共有人,如果體育中考引體向上達個以上(含個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CB∥OA,∠B=∠A=100°,E、F在CB上,且滿足∠FOC=∠AOC,OE平分∠BOF.
(1)求∠EOC的度數(shù);
(2)若平行移動AC,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;
(3)在平行移動AC的過程中,是否存在某種情況,使∠OEB=∠OCA?若存在,求出∠OCA度數(shù);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:如圖所示是每一個小方格都是邊長為1的正方形網(wǎng)格,
(1)利用網(wǎng)格線作圖:
①在上找一點P,使點P到和的距離相等;
②在射線上找一點Q,使.
(2)在(1)中連接與,試說明是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CA⊥AB,垂足為點A,AB=8,AC=4,射線BM⊥AB,垂足為點B,一動點E從A點出發(fā)以2厘米/秒的速度沿射線AN運動,點D為射線BM上一動點,隨著E點運動而運動,且始終保持ED=CB,當點E離開點A后,運動______ 秒時,△DEB與△BCA全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推廣陽光體育“大課間”活動,我市某中學決定在學生中開設A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統(tǒng)計圖.請結合圖中的信息解答下列問題:
(1)在這項調查中,共調查了多少名學生?
(2)請計算本項調查中喜歡“立定跳遠”的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;
(3)若調查到喜歡“跳繩”的5名學生中有3名男生,2名女生.現(xiàn)從這5名學生中任意抽取2名學生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y= (k>0)的圖象經(jīng)過點A(1,m),過點A作AB⊥y軸于點B,且△AOB的面積為1.
(1)求m,k的值;
(2)若一次函數(shù)y=nx+2(n≠0)的圖象與反比例函數(shù)y= 的圖象有兩個不同的公共點,求實數(shù)n的取值范圍.
查看答案和解析>>