【題目】如圖,CA⊥AB,垂足為點(diǎn)A,AB=8,AC=4,射線BM⊥AB,垂足為點(diǎn)B,一動(dòng)點(diǎn)E從A點(diǎn)出發(fā)以2厘米/秒的速度沿射線AN運(yùn)動(dòng),點(diǎn)D為射線BM上一動(dòng)點(diǎn),隨著E點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持ED=CB,當(dāng)點(diǎn)E離開點(diǎn)A后,運(yùn)動(dòng)______ 秒時(shí),△DEB與△BCA全等.
【答案】0,2,6,8
【解析】
此題要分兩種情況:①當(dāng)E在線段AB上時(shí),②當(dāng)E在BN上,再分別分成兩種情況AC=BE,AC=BE進(jìn)行計(jì)算即可.
①當(dāng)E在線段AB上,AC=BE時(shí),△ACB≌△BED,
∵AC=4,
∴BE=4,
∴AE=84=4,
∴點(diǎn)E的運(yùn)動(dòng)時(shí)間為4÷2=2(秒);
②當(dāng)E在BN上,AC=BE時(shí),
∵AC=4,
∴BE=4,
∴AE=8+4=12,
∴點(diǎn)E的運(yùn)動(dòng)時(shí)間為12÷2=6(秒);
③當(dāng)E在線段AB上,AB=EB時(shí),△ACB≌△BDE,
這時(shí)E在A點(diǎn)未動(dòng),因此時(shí)間為0秒;
④當(dāng)E在BN上,AB=EB時(shí),△ACB≌△BDE,
AE=8+8=16,
點(diǎn)E的運(yùn)動(dòng)時(shí)間為16÷2=8(秒),
故答案為:0,2,6,8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“書香包河”讀書活動(dòng)中,學(xué)校準(zhǔn)備購買一批課外讀物,為使課外讀物滿足學(xué)生們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了______________名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m=_________,n=__________;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=4,∠C=30°,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),作DP∥AB交EF于點(diǎn)G,∠PDC=90°,求線段GF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)a、點(diǎn)B表示數(shù)b,a、b滿足|a﹣30|+(b+6)2=0.點(diǎn)O是數(shù)軸原點(diǎn).
(1)點(diǎn)A表示的數(shù)為 ,點(diǎn)B表示的數(shù)為 ,線段AB的長為 .
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請?jiān)跀?shù)軸上找一點(diǎn)C,使AC=2BC,則點(diǎn)C在數(shù)軸上表示的數(shù)為 .
(3)現(xiàn)有動(dòng)點(diǎn)P、Q都從B點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長度的速度向終點(diǎn)A移動(dòng);當(dāng)點(diǎn)P移動(dòng)到O點(diǎn)時(shí),點(diǎn)Q才從B點(diǎn)出發(fā),并以每秒3個(gè)單位長度的速度向右移動(dòng),且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q就停止移動(dòng),設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,問:當(dāng)t為多少時(shí),P、Q兩點(diǎn)相距4個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠2=180°(已知),
∠1+∠EFD=180°(鄰補(bǔ)角定義),
∴∠2=∠EFD( )
∴AB∥EF(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠ADE=∠3( )
∵∠3=∠B(已知)
∴∠ADE=∠B( )
∴ (同位角相等,兩直線平行)
∴∠AED=∠C(兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】移動(dòng)公司為了方便學(xué)生上網(wǎng)查資料,提供了兩種上網(wǎng)優(yōu)惠方法:
A.計(jì)時(shí)制:0.08元/分鐘;B.包月制:40元/月(只限一臺電腦上網(wǎng)).
另外,不管哪種收費(fèi)方式,上網(wǎng)時(shí)都得加收通訊費(fèi)0.03元/分鐘.
(1)設(shè)小明某月上網(wǎng)時(shí)間為x分鐘,請分別用含x的式子表示出兩種付費(fèi)方式下小明應(yīng)支付的費(fèi)用;
(2)一個(gè)月上網(wǎng)時(shí)間為多少分鐘時(shí),兩種方式付費(fèi)一樣多?
(3)如果一個(gè)月上網(wǎng)10小時(shí),選擇哪種方式更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點(diǎn)B落在點(diǎn)E處,AE交CD于點(diǎn)F,連接DE.
(1)求證:△DEC≌△EDA;
(2)求DF的值;
(3)如圖2,若P為線段EC上一動(dòng)點(diǎn),過點(diǎn)P作△AEC的內(nèi)接矩形,使其頂點(diǎn)Q落在線段AE上,定點(diǎn)M、N落在線段AC上,當(dāng)線段PE的長為何值時(shí),矩形PQMN的面積最大?并求出其最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)邊長為a(單位:cm)的正方形ABCD中,點(diǎn)E、M分別是線段AC,CD上的動(dòng)點(diǎn),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.
(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合,求證:DF=MN;
(2)如圖2,假設(shè)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),點(diǎn)E同時(shí)從點(diǎn)A出發(fā),以 cm/s速度沿AC向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0);
①判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時(shí),則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由.
②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關(guān)系;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com