【題目】.如圖,矩形ABCD中,OAC中點(diǎn),過點(diǎn)O的直線分別與ABCD交于點(diǎn)E、F,連結(jié)BFAC于點(diǎn)M,連結(jié)DEBO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC②△EOB≌△CMB;③DE=EF;④SAOESBCM=23.其中正確結(jié)論的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】C

【解析】試題分析:利用線段垂直平分線的性質(zhì)的逆定理可得結(jié)論;△OMB≌△OEB△EOB≌△CMB

先證△BEF是等邊三角形得出BF=EF,再證DEBF得出DE=BF,所以得DE=EF;可知△BCM≌△BEO,則面積相等,△AOE△BEO屬于等高的兩個(gè)三角形,其面積比就等于兩底的比,即SAOESBOE=AEBE,由直角三角形30°角所對(duì)的直角邊是斜邊的一半得出BE=2OE=2AE,得出結(jié)論SAOESBOE=AEBE=12

①∵矩形ABCD中,OAC中點(diǎn), ∴OB=OC∵∠COB=60°∴△OBC是等邊三角形, ∴OB=BC,

∵FO=FC, ∴FB垂直平分OC, 故正確;

②∵FB垂直平分OC, ∴△CMB≌△OMB, ∵OA=OC,∠FOC=∠EOA∠DCO=∠BAO, ∴△FOC≌△EOA,

∴FO=EO, 易得OB⊥EF∴△OMB≌△OEB, ∴△EOB≌△CMB, 故正確;

△OMB≌△OEB≌△CMB∠1=∠2=∠3=30°BF=BE, ∴△BEF是等邊三角形, ∴BF=EF,

∵DF∥BEDF=BE, 四邊形DEBF是平行四邊形, ∴DE=BF, ∴DE=EF, 故正確;

在直角△BOE∵∠3=30°, ∴BE=2OE, ∵∠OAE=∠AOE=30°∴AE=OE, ∴BE=2AE

∴SAOESBCM=SAOESBOE=12, 故錯(cuò)誤;

所以其中正確結(jié)論的個(gè)數(shù)為3個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸、y軸的正半軸分別交于點(diǎn)A,B,直線CD與x軸正半軸、y軸負(fù)半軸分別交于點(diǎn)D,C,AB與CD相交于點(diǎn)E,點(diǎn)A,B,C,D的坐標(biāo)分別為(8,0)、(0,6)、(0,﹣3)、(4,0),點(diǎn)M是OB的中點(diǎn),點(diǎn)P在直線AB上,過點(diǎn)P作PQ∥y軸,交直線CD于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求直線AB,CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)用含m的代數(shù)式表示PQ的長(zhǎng);
(3)若以點(diǎn)M,O,P,Q為頂點(diǎn)的四邊形是矩形,請(qǐng)直接寫出相應(yīng)的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PA、PB⊙OA、B兩點(diǎn),連AB,且PA,PB的長(zhǎng)是方程x2﹣2mx+3=0的兩根,AB=m.試求:

1⊙O的半徑;

2)由PA,PB,圍成圖形(即陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第一中學(xué)組織七年級(jí)部分學(xué)生和老師到蘇州樂園開展社會(huì)實(shí)踐活動(dòng),租用的客車有50座和30座兩種可供選擇.學(xué)校根據(jù)參加活動(dòng)的師生人數(shù)計(jì)算可知:若只租用30座客車x輛,還差5人才能坐滿;

1則該校參加此次活動(dòng)的師生人數(shù)為 (用含x的代數(shù)式表示);

2若只租用50座客車,比只租用30座客車少用2輛,求參加此次活動(dòng)的師生至少有多少人?

3已知租用一輛30座客車往返費(fèi)用為400元,租用一輛50座客車往返費(fèi)用為600元,學(xué)校根據(jù)師生人數(shù)選擇了費(fèi)用最低的租車方案,總費(fèi)用為2200元,試求參加此次活動(dòng)的師生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),O為BD的中點(diǎn),PO的延長(zhǎng)線交BC于Q.
(1)求證:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P從點(diǎn)A出發(fā),以1厘米/秒的速度向D運(yùn)動(dòng)(不與D重合).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);并求t為何值時(shí),四邊形PBQD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題原型:如圖①,正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E、F分別為邊AB、AD中點(diǎn),且∠EOF=90°,易得四邊形AEOF的面積是正方形ABCD的面積的四分之一.(不用證明)

探究發(fā)現(xiàn):某數(shù)學(xué)興趣小組,嘗試改變點(diǎn)E、F的位置,點(diǎn)E、F分別為邊AB、AD上任一點(diǎn),且∠EOF=90°,如圖②,探究:四邊形AEOF的面積是否為正方形ABCD面積的四分之一?并說明理由.
拓展提升:如圖③,菱形ABCD中,∠BAD=120°,∠EAF=60°,且點(diǎn)E、F分別在邊DC、BC上,四邊形AECF的面積是菱形ABCD面積的幾分之一?(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:

(1) ; (2) ;

(3) ; (4) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab 0,且 a b 0 ,那么(

A.a 0,b0;B.a 0,b 0;C.a 0 ,b 0;D.a 0,b 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下面的判斷:

①若△ABC中,a2+b2≠c2,則△ABC不是直角三角形;

②△ABC是直角三角形,∠C=90°,則a2+b2=c2;

③若△ABC中,a2-b2=c2,則△ABC是直角三角形;

④若△ABC是直角三角形,則(a+b)(a-b)=c2.

其中判斷正確的有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案